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Abstract

These corrections refer to the 3rd edition of the book A Wavelet Tour of Signal Processing
– The Sparse Way by Stéphane Mallat, published in December 2008 by Elsevier. If you
find mistakes or imprecisions in these corrections, please send an email to Gabriel Peyré
(gabriel.peyre@ceremade.dauphine.fr). More information about the book, including how
to order it, numerical simulations, and much more, can be find online at wavelet-tour.com.

1 Chapter 2

Exercise 2.1. For all t, the function ω 7→ e−iωtf(t) is continuous. If f ∈ L1(R), then for all ω,
|e−iωtf(t)| 6 |f(t)| which is integrable. One can thus apply the theorem of continuity under the
integral sign

∫
which proves that f̂ is continuous.

If f̂ ∈ L1(R), using the inverse Fourier formula (2.8) and a similar argument, one proves that
f is continuous.

Exercise 2.2. If
∫
|h| = +∞, for all A > 0 there exists B > 0 such that

∫ B
−B |h| > A. Taking

f(x) = 1[−A,A] sign(h(−x)) which is integrable and bounded by 1 shows that

f ? h(0) =
∫ B

−B
sign(h(t))h(t)dt > A.

This shows that the operator f 7→ f ? h is not bounded on L∞, and thus the filter h is unstable.

Exercise 2.3. Let fu(t) = f(t− u), by change of variable t− u→ t, one gets

f̂u(ω) =
∫
f(t− u)e−iωtdt =

∫
f(t)e−iω(t+u)dt = e−iωuf̂(ω).

Let fs(t) = f(t/s), with s > 0, by change of variable t/s 7→ t, one get

f̂s(ω) =
∫
f(t/s)e−iωtdt =

∫
f(t)e−iωst|s|dt = |s|f̂(sω).
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Let f by C1 and g = f ′, the by integration by parts, since f(t) → 0 where |t| → +∞,

ĝ(ω) =
∫
f ′(t)e−iωtdt = −

∫
f(t)(−iω)e−iωtdt = (iω)f̂(ω).

Exercise 2.4. One has

fr(t) = Re[f(t)] = [f(t) + f∗(t)]/2 and fi(t) = Ima[f(t)] = [f(t)− f∗(t)]/2

so that

f̂r(ω) =
∫
f(t) + f∗(t)

2
e−iωtdt = f̂(ω)/2 + Conj

(∫
f(t)eiωtdt

)
/2

= [f̂(ω) + f̂∗(−ω)]/2,

where Conj(a) = a∗ is the complex conjugate. The same computation leads to

f̂i(ω) = [f̂(ω)− f̂∗(−ω)]/2.

Exercise 2.5. One has
f̂(0) =

∫
f(t)dt = 0.

If f ∈ L1(R), one can apply the theorem of derivation under the integral sign
∫

and get

d
dω

f̂(ω) =
∫
−itf(t)e−iωtdt =⇒ f̂ ′(0) = −i

∫
tf(t)dt = 0.

Exercise 2.6. If f = 1[−π,π] then one can verify that

f̂(ω) =
2 sin(πω)

ω
.

It result that ∫
sin(πω)
πω

=
1
2π

∫
f̂(ω)dω = f(0) = 1.

If g = 1[−1,1] then ĝ(ω)/2 = sin(ω)/ω. The inverse Fourier transform of ĝ(ω)3 is g ? g ? g(t) so∫
sin3(ω)
ω3

dω =
1
8

∫
ĝ(ω)3dω =

2π
8
g ? g ? g(0) =

3π
4
,

where we used the fact that

g ? g ? g(0) =
∫ 1

−1

h(t)dt = 3

where h is a piecewise linear hat function with h(0) = 2.

Exercise 2.7. Writing u = a− ib, and differentiating under the integral sign
∫

, one has

f ′(ω) =
∫
−ite−ut

2
e−iωtdt.

By integration by parts, one gets an ordinary differential equation

f ′(ω) =
−ω
2u

f̂(ω)
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whose solution is
f(ω) = Ke−

ω2
4u

for some constant K = f̂(0). Using a switch from Euclidean coordinates to polar coordinates
(x, y) → (r, θ) which satisfies dxdy = rdrdθ, one gets

K2 =
∫
e−ux

2
dx
∫
e−uy

2
dy =

∫∫
e−u(x2+y2)dxdy

=
∫ 2π

0

∫ +∞

0

e−ur
2
rdrdθ = 2π

∫ +∞

0

re−ur
2
dr =

π

u
,

which gives the result.

Exercise 2.8. If f is C1 with a compact support, with an integration by parts we get

f̂(ω) =
1
iω

∫
f ′(t)e−iωtdt

so that
|f̂(ω)| 6 C

ω
with C =

∫
|f ′(t)|dt < +∞,

which proves that f(ω) → 0 when |ω| → +∞.
Let f ∈ L1(R) and ε > 0. Since C1 functions are dense in L1(R), one can find g such that∫
|f − g| 6 ε/2. Since ĝ(ω) → 0 when |ω| → +∞, there exists A such that |ĝ(ω)| 6 ε/2 when

|ω| > A. Moreover, the Fourier integral definition implies that

|f̂(ω)− ĝ(ω)| 6
∫
|f(t)− g(t)| dt

so for all |ω| > A we have |f̂(ω)| 6 ε which proves that f(ω) → 0 when |ω| → +∞.

Exercise 2.9. a) For f0(t) = 1[0,+∞)(t)ept, we get

f̂0(ω) =
∫ +∞

0

e(p−iω)tdt =
1

iω − p
.

For fn(t) = tn1[0,+∞)(t)ept, an integration by parts gives

f̂n(ω) =
∫ +∞

0

tne(p−iω)tdt =
n

iω − p
f̂n−1(ω),

so that
f̂n(ω) =

n!
(iω − p)n

.

b) Computing the Fourier transform on both sides of the differential equation gives

g = f ? h where ĥ(ω) =
∑K
k=0 ak(iω)k∑M
k=0 bk(iω)k

.

We denote by {pk}Lk=0 the poles of the polynomial
∑M
k=0 bkz

k, with multiplicity nk. If K < M ,
one can decompose the rational fraction into

ĥ(ω) =
L∑
k=0

Qk(iω)
(iω − pk)nk
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where each Qk is a polynomial of degree strictly smaller than nk. It results that h(t) is a sum of
derivatives up to a degree strictly smaller than nk of the inverse Fourier transform of

f̂pk,nk
(ω) =

1
(iω − pk)nk

which is
fpk,nk

(t) =
1
nk!

tnk1[0,+∞)(t)epkt.

Each filter fpk,nk
is causal, stable and nk times differentiable. It results that that h is causal and

stable.
If, there exists l with Re(pl) = 0 then for the frequency ω = −ipl we have |ĥ(ω)| = +∞ so h

can not be stable.
If, there exists l with Re(pl) > 0 then by observing that f̂pl,nl

(−ω) = (−1)nl(iω+ pl)−nl and
by applying the result in a) we get

fpl,nkl
(t) =

1
nl!

tnl1(−∞,0](t)e−plt

which is anticausal. We thus derive that h is not causal.
c) Denoting α = eiπ/3, one can write

|ĥ(ω)|2 =
1

1− (iω/ω0)6

with
1/ĥ(ω) = (iω/ω0 + 1)(iω/ω0 + α)(iω/ω0 + α∗) = P (iω).

Since the zeros of P (z) have all a strictly negative real part, h is stable and causal. To compute
h(t) we decompose

ĥ(ω) =
a1

iω/ω0 + 1
+

a2

iω/ω0 + α
+

a3

iω/ω0 + α∗
,

we compute a1, a2 and a3 and by applying the result in (a) we derive that

ĥ(t) = ω0(a1 1[0,+∞)(t) e−tω0 + a2 1[0,+∞)(t) e−tαω0 + a3 1[0,+∞)(t) e−tα
∗ω0) .

Exercise 2.10. For a > 0 and u > 0 and g a Gaussian function, define

fa,u(t) = eiatg(t− u) + e−iatg(t+ u).

We verify that σω(fa,u) increases proportionally to u. Its Fourier transform is

f̂a,u(ω) = e−iuω ĝ(ω − a) + eiuω ĝ(ω + a)

so σω(fa,u) increases proportionally to a. For a and u sufficiently large we get the the result.

Exercise 2.11. Since f(t) > 0

|f̂(ω)| = |
∫
f(t) e−iωt dt| 6

∫
f(t) dt = f̂(0) .

Exercise 2.12. a) Denoting u(t) = | sin(t)|, one has g(t) = a(t)u(ω0t) so that

ĝ(ω) =
1
2π
â(ω) ? û(ω/ω0)
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where û(ω) is a distribution
û(ω) =

∑
n

cnδ(ω − n)

and cn is the Fourier coefficient

cn =
∫ π

−π
| sin(t)|e−intdt = −

∫ 0

−π
sin(t)e−intdt+

∫ π

0

sin(t)e−intdt.

The change of variable t→ t+ π in the first integral shows that c2k+1 = 0 and for n = 2k,

c2k = 2
∫ π

0

sin(t)e−i2ktdt =
4

1− 4k2
.

One thus has
û(ω) =

1
2π

∑
n

cnâ(ω − nω0) =
2
π

∑
k

â(ω − 2kω0)
1− 4k2

.

b) If â(ω) = 0 for |ω| > ω0, then h defined by ĥ(ω) = π
2 1[−ω0,ω0] guarantees that ĝĥ = â and

hence a = g ? h.

Exercise 2.13. One has

ĝ(ω) =
1
2

∑
n

f̂n(ω) ? [δ(ω − 2nω0) + δ(ω + 2nω0)] =
1
2

∑
n

[f̂n(ω − 2nω0) + f̂n(ω + 2nω0)].

Each f̂n(ω ± 2nω0) is supported in [(−1 ± 2n)ω0, (1 ± 2n)ω0], and thus ĝ is supported in
[−2Nω0, 2Nω0].

Since the intervals [(−1± 2n)ω0, (1± 2n)ω0] are disjoint, one has

f̂n(ω ± 2nω0) = 2ĝ(ω)1[(−1±2n)ω0,(1±2n)ω0](ω).

The change of variable ω ± 2nω0 → ω and summing for n and −n gives

f̂n(ω) = [ĝ(ω − 2nω0) + ĝ(ω + 2nω0)]ĥ(ω),

where ĥ(ω) = 1[−ω0,ω0](ω). Denoting gn(t) = 2g(t) cos(2nω0t), one sees that fn is recovered as

fn = gn ? h.

Exercise 2.14. The function φ(t) = sin(πt)/(πt) is monotone on [−3/2, 0] and [0, 3/2] on which
is variation is 1 + 2

3π . For each k ∈ N∗, it is also monotone on each interval [k+ 1/2, k+ 3/2] on
which the variation is 1

π [(k + 1/2)−1 + (k + 3/2)−1]. One thus has

||φ||V = 2(1 +
2
3π

) +
2
π

∑
k>1

[(k + 1/2)−1 + (k + 3/2)−1] = +∞.

For φ = λ1[a,b], |φ′| = λδa + λδb and hence ||φ||V = 2λ.

Exercise 2.16. Let

f(x) = 1[0,1]2(x1, x2) = f0(x1)f0(x2) where f0(x1) = 1[0,1](x1).
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One has

f̂(ω1, ω2) = f̂0(ω1)f̂0(ω2) =
(eiω1 − 1)(eiω2 − 1)

ω1ω2
.

Let
f(x) = e−x

2
1−x

2
2 = f0(x1)f0(x2) where f0(x1) = e−x

2
1 .

One has
f̂(ω1, ω2) = f̂0(ω1)f̂0(ω2) = πe−(ω2

1+ω2
2)/4.

Exercise 2.17. If |t| > 1, the ray ∆t,θ does not intersect the unit disc, and thus pθ(t) = 0. For
|t| < 1, the Radon transform is computed as the length of a cross section of a disc

pθ(t) = 2
√

1− t2.

Exercise 2.18. We prove that the Gibbs oscillation amplitude is independent of the angle θ and

is equal to a one-dimensional Gibbs oscillation. Let us decompose f(x) into a continuous part
f0(x) and a discontinuity of constant amplitude A:

f(x) = f0(x) +Au(cos(θ)x1 + sin(θ)x2)

where u(t) = 1[0,+∞)(t) is the one-dimensional Heaviside function. The filter satisfies hξ(x1, x2) =
gξ(x1) gξ(x2) with gξ(t) = sin(ξt)/(πt). The Gibbs phenomena is produced by the discontinuity
corresponding to the Heaviside function so we can consider that f0 = 0. Let us suppose that
|θ| 6 π/4, with no loss of generality. We first prove that

f ? hξ(x) = f ? gξ(x) (1)

where ĝξ(ω1, ω2) = 1[−ξ,ξ](ω2). Indeed f(x) is constant along any line of angle θ, one can thus
verify that its Fourier transform has a support located on the line in the Fourier plane, of angle
θ+π/2 which goes through 0. It results that f̂(ω)ĥξ(ω) = f̂(ω)ĝξ(ω) because the filtering limits
the support of f̂ to |ω2| 6 ξ. But gξ(x1, x2) = δ(x1) sin(ξx2)/(πx2). The convolution (1) is thus
a one-dimensional convolution along the x2 variable, which is computed in the Gibbs Theorem
2.8. The resulting one-dimensional Gibbs oscillations are of the order of A× 0.045.

2 Chapter 3

Exercise 3.1. One has φs,n(t) = s
−1/21[ns,(n+1)s) , which satisfies ||φs,n || = 1 and 〈φs,n , φs,n′ 〉 = 0

for n 6= n
′ because [ns, (n + 1)s) and [n′s, (n′ + 1)s) are disjoint. If f (x) = an on each interval

[ns, (n + 1)s), then
f (x) =

∑
n

an1[ns,(n+1)s) =

∑
n

〈f, φs,n〉φs,n

So {φs,n}n is an orthonormal basis of functions that are piecewise constant on each interval
[ns, (n + 1)s).

Exercise 3.2. If Supp( ˆf ) ⊂ [−π/s, π/s], then

f̂(ω) = f̂(ω)1[−π/s,π/s](ω) =
1
s
f̂(ω)φ̂s(ω)
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