




CHAPTER 3

1. One way to do this is to use I-4. Namely, consider the isosceles triangle ABC with equal
sides AB and BC also as a triangle CBA. Then the triangles ABC and CBA have
two sides equal to two sides and the included angles also equal. Thus, by I-4, they are
congruent. Therefore, angle BAC is equal to angle BCA, and the theorem is proved.

2. Put the point of the compass on the vertex V of the angle and swing equal arcs inter-
secting the two legs at A and B. Then place the compass at A and B respectively and
swing equal arcs, intersecting at C . The line segment connecting V to C then bisects the
angle. To show that this is correct, note that triangles V AC and V BC are congruent
by SSS. Therefore, the two angles AV C and BV C are equal.

3. Let the lines AB and CD intersect at E. Then angles AEB and CED are both straight
angles, angles equal to two right angles. If one subtracts the common angle CEB from
each of these, the remaining angles AEC and BED are equal, and these are the vertical
angles of the theorem.

4. Suppose the three lines have length a, b, and c, with a ≥ b ≥ c. On the straight line DH
of length a + b + c, let the length of DF be a, the length of FG be b, and the length of
GH be c. Then draw a circle centered on F with radius a and another circle centered
at G with radius c. Let K be an intersection point of the two circles. Then connect FK
and GK. Triangle FKG will then be the desired triangle. For FK = FD, and this has
length a. Also FG has length b, while GK = GH and this has length c. Note also that
we must have b + c > a, for otherwise the two circles would not intersect. That a + b > c
and a + c > b is obvious from how we have labeled the three lengths.

5. Suppose angle DCE is given, and we want to construct an angle equal to angle DCE at
point A of line AB. Draw the line DE so that we now have a triangle DCE. (Here D
and E are arbitrary points along the two arms of the given angle.) Then, by the result
of exercise 4, construct a triangle AGF , with AG along line AB, where AG = CE,
AF = CD, and FG = DE. By the side-side-side congruence theorem, triangle AGF is
congruent to triangle CED. Therefore, angle FAG is equal to angle DCE, as desired.

6. Let ABC be the given triangle. Extend BC to D and draw CE parallel to AB. By I–29,
angles BAC and ACE are equal, as are angles ABC and ECD. Therefore angle ACD
equals the sum of the angles ABC and BAC . If we add angle ACB to each of these, we
get that the sum of the three interior angles of the triangle is equal to the straight angle
BCD. Because this latter angle equals two right angles, the theorem is proved.

7. Place the given rectangle BEFG so that BE is in a straight line with AB. Extend FG to
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H so that AH is parallel to BG. Connect HB and extend it until it meets the extension
of FE at D. Through D draw DL parallel to FH and extend GB and HA so they meet
DL in M and L respectively. Then HD is the diagonal of the rectangle FDLH and
so divides it into two equal triangles HFD and HLD. Because triangle BED is equal
to triangle BMD and also triangle BGH is equal to triangle BAH, it follows that the
remainders, namely rectangles BEFG and ABML are equal. Thus ABML has been
applied to AB and is equal to the given rectangle BEFG.

8. Because triangles ABN , ABC , and ANC are similar, we have BN : AB = AB : BC ,
so AB2 = BN · BC , and NC : AC = AC : BC , so AC2 = NC · BC . Therefore
AB2 + AC2 = BN · BC + NC · BC = (BN + NC) · BC = BC2, and the theorem is
proved.

9. In this proof, we shall refer to certain propositions in Euclid’s Book I, all of which are
proved before Euclid first uses Postulate 5. (That occurs in proposition 29.) First,
assume Playfair’s axiom. Suppose line t crosses lines m and l and that the sum of the
two interior angles (angles 1 and 2 in the diagram) is less than two right angles. We
know that the sum of angles 1 and 3 is equal to two right angles. Therefore 6 2 < 6 3.
Now on line BB′ and point B′ construct line B′C ′ such that 6 C ′B′B = 6 3 (Proposition
23). Therefore, line B′C ′ is parallel to line l (Proposition 27). Therefore, by Playfair’s
axiom, line m is not parallel to line l. It therefore meets l. We must show that the two
lines meet on the same side as C ′. If the meeting point A is on the opposite side, then
6 2 is an exterior angle to triangle ABB′, yet it is smaller than 6 3, one of the interior
angles, contradicting proposition 16. We have therefore derived Euclid’s postulate 5.

Second, assume Euclid’s postulate 5. Let l be a given line and P a point outside the line.
Construct the line t perpendicular to l through P (Proposition 12). Next, construct the
line m perpendicular to line t at P (Proposition 11). Since the alternate interior angles
formed by line t crossing lines m and l are both right and therefore are equal, it follows
from Proposition 27 that m is parallel to l. Now suppose n is any other line through P .
We will show that n meets l and is therefore not parallel to l. Let 6 1 be the acute angle
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that n makes with t. Then the sum of angle 1 and angle PQR is less than two right
angles. By postulate 5, the lines meet.

Note that in this proof, we have actually proved the equivalence of Euclid’s Postulate
5 to the statement that given a line l and a point P not on l, there is at most one line
through P which is parallel to l. The other part of Playfair’s Axiom was proved (in the
second part above) without use of postulate 5 and was not used at all in the first part.

10. One possibility for an algebraic translation: If the line has length a and is cut at a point
with coordinate x, then 4ax + (a − x)2 = (a + x)2. This is a valid identity. Here is a
geometric diagram, with AB = ME = a and CB = BD = BK = KR = x:

11. If ABC is the given acute-angled triangle and AD is perpendicular to BC , then the
theorem states that the square on AC is less than the squares on CB and BA by twice
the rectangle contained by CB and BD. If we label AC as b, BA as c, and CB as a,
then BD = c cos B. Thus the theorem can be translated algebraically into the form
b2 = a2 + c2 − 2ac cos B, exactly the law of cosines in this case.

12. Suppose the diameter CD of a circle with center E bisects the chord AB at F . Then
join EA and EB, forming triangle EAB. Triangles AEF and BEF are congruent by
side-side-side (since AE = BE are both radii of the circle and F bisects AB). Therefore
angles EFA and EFB are equal. But the sum of those two angles is equal to two right
angles. Hence each is a right angle, as desired. To prove the converse, use the same
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construction and note that triangle AEB is isosceles, so angle EAF is equal to angle
EBF , while both angles EFA and EFB are right by hypothesis. It follows that triangles
AEF and BEF are again congruent, this time by angle-angle-side. So AF = BF , and
the diameter bisects the chord.

13. In the circle ABC , let the angle BEC be an angle at the center and the angle BAC be an
angle at the circumference which cuts off the same arc BC . Connect 6 EAB. Similarly,
6 FEC is double 6 EAC . Therefore the entire 6 BEC is double the entire 6 BAC . Note
that this argument holds as long as line EF is within 6 BEC. If it is not, an analogous
argument by subtraction holds.

14. Let 6 BAC be an angle cutting off the diameter BC of the circle. Connect A to the
center E of the circle. Since EB = EA, it follows that 6 EBA = 6 EAB. Similarly,
6 ECA = 6 EAC . Therefore the sum of 6 EBA and 6 ECA is equal to 6 BAC . But the
sum of all three angles equals two right angles. Therefore, twice 6 BAC is equal to two
right angles, and angle BAC is itself a right angle.

15. Let triangle ABC be given. Let D be the midpoint of AB and E the midpoint of AC .
Draw a perpendicular at D to AB and a perpendicular at E to AC and let them meet at
point F (which may be inside or outside the triangle, or on side BC). Assume first that
F is inside the triangle, and connect FB, FA, and FC . Since BD = BA, triangles FDB
and FDA are congruent by side-angle-side. Therefore FB = FA. Similarly, triangles
FEA and FEC are congruent. So FC = FA. Therefore all three lines FA, FB, and
FC are equal, and a circle can be drawn with center F and radius equal to FA. This
circle will circumscribe the given triangle. Finally, note that the identical construction
works if F is on line BC or if F is outside the triangle.

16. Let G be the center of the given circle and AGD a diameter. With center at D and radius
DG, construct another circle. Let C and E be the two intersections of the two (equal)
circles, and connect DC and DE. Then DE and DC are two sides of the desired regular
hexagon. To find the other four sides, draw the diameters CGF and EGB. Then CB,
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BA, AF , and FE are the other sides. To demonstrate that we have in fact constructed
a regular hexagon, note that all the triangles whose bases are sides of the hexagon and
whose other sides are radii are equilateral; thus all the sides of the hexagon are equal
and all the angles of the hexagon are also equal.

17. In the circle, inscribe a side AC of an equilateral triangle and a side AB of an equilateral
pentagon. Then arc BC is the difference between one-third and one-fifth of the circum-
ference of the circle. That is, arc BC = 2

15
of the circumference. Thus, if we bisect that

arc at E, then lines BE and EC will each be a side of a regular 15-gon.

18. Let a = s1b + r1, b = s2r1 + r2, . . ., rk−1 = sk+1rk. Then rk divides rk−1 and therefore
also rk−2, . . . , b, a. If there were a greater common divisor of a and b, it would divide
r1, r2, . . ., rk. Since it is impossible for a greater number to divide a smaller, we have
shown that rk is in fact the greatest common divisor of a and b.

19.
963 = 1 · 657 + 306

657 = 2 · 306 + 45

306 = 6 · 45 + 36

45 = 1 · 36 + 9

36 = 4 · 9 + 0

Therefore, the greatest common divisor of 963 and 657 is 9.

4001 = 1 · 2689 + 1312

2689 = 2 · 1312 + 65

1312 = 20 · 65 + 12

65 = 5 · 12 + 5

12 = 2 · 5 + 2

5 = 2 · 2 + 1

Therefore, the greatest common divisor of 4001 and 2689 is 1.

20.
46 = 7 · 6 + 4 23 = 7 · 3 + 2
6 = 1 · 4 + 2 3 = 1 · 2 + 1
4 = 2 · 2 2 = 2 · 1

Note that the multiples 7, 1, 2 in the first example equal the multiples 7, 1, 2 in the
second.
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21.
33 = 2 · 12 + 9 11 = 2 · 4 + 3
12 = 1 · 9 + 3 4 = 1 · 3 + 1
9 = 3 · 3 3 = 3 · 1

It follows that both ratios can be represented by the sequence (2, 1, 3).

22. Since 1 − x = x2, we have

1 = 1 · x + (1 − x) = 1 · x + x2

x = 1 · x2 + (x − x2) = 1 · x2 + x(1 − x) = 1 · x2 + x3

x2 = 1 · x3 + (x2 − x3) = 1 · x3 + x2(1 − x) = 1 · x3 + x4

· · ·

Thus 1 : x can be expressed in the form (1, 1, 1, . . .).

23. If d is the diagonal of a square of side s, then the first division gives d = 1s + r. To
understand the next steps, it is probably easiest to set s = 1 and deal with the numerical
values. Therefore, d =

√
2, and r =

√
2 − 1. Our next division gives s = 2r + t, where

t = 3 − 2
√

2. Geometrically, if we lay off s along the diagonal, then r is the remainder
d− s. Then draw a square of side r with part of the side of the original square being its
diagonal. Note that if we now lay off r along the diagonal of that square, the remainder
is t. In other words, r is the difference between the diagonal of a square of side s and s,
while t is the difference between the diagonal of a square of side r and r. It follows that
if one performs the next division in the process, we will get the same relationship. That
is, r = 2t + u, where now u is the difference between the diagonal of a square of side t
and t. Thus, this process will continue indefinitely and the ratio d : s and be expressed
as (1, 2, 2, 2, . . .).

24. Since a > b, there is an integral multiple m of a− b with m(a− b) > c. Let q be the first
multiple of c that exceeds mb. Then qc > mb ≥ (q − 1)c, or qc − c ≤ mb < qc. Since
c < ma − mb, it follows that qc ≤ mb + c < ma. But also qc > mb. Thus we have a
multiple (q) of c that is greater than a multiple (m) of b, while the same multiple (q)
of c is not greater than the same multiple (m) of a. Thus by definition 7 of Book V,
c : b > c : a.

25. Let A : B = C : D = E : F . We want to show that A : B = (A + C + E) : (B + D + F ).
Take any equimultiples mA and m(A+C+E) of the first and third and any equimultiples
nB and n(B+D+F ) of the second and fourth. Since m(A+C+E) = mA+mC+mE, and
since n(B +D+F ) = nB +nD+nF , and since whenever mA > nB, we have mC > nD
and mE > nF , it follows that mA > nB implies that m(A + C + E) > n(B + D + F ).
Since a similar statement holds for equality and for “less than”, the result follows from
Eudoxus’ definition. A modern proof would use the fact that a1bi = b1ai for every i and
then conclude that a1(b1 + b2 + · · · + bn) = b1(a1 + a2 + · · · + an).

26. Given that a : b = c : d, we want to show that a : c = b : d. So take any equimultiples
ma, mb of a and b and also equimultiples nc, nd of c and d. Now ma : mb = a : b =
c : d = nc : nd. Thus if ma > nc, then mb > nd; if ma = nc, then mb = nd; and if
ma < nc, then mb < nd. Thus, by the definition of equal ratio, we have a : c = b : d.
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27. In the diagram, let DG = 8, GE = 4, and DH = 6. Connect GH and draw EF parallel
to GH. Then HF is equal to the fourth proportional x.

28. Let AB = 9 and BC = 5. Draw a circle with AC as diameter and erect a perpendicular
to AC at B, meeting the circle at E. Then BE is the desired length x.

29. Suppose the first of the equal and equiangular parallelograms has sides of length a and
b while the second has sides of length c and d, each pair surrounding an angle equal
to α. Since the area of a parallelogram is the product of the two sides with the sine
of the included angle, we know that ab sinα = cd sin α. It follows that ab = cd or that
a : c = d : b, as desired. Conversely, if a : c = d : b and the parallelograms are equiangular
with angle α between each pair of given sides, then ab = cd and ab sinα = cd sin α, so
the parallelograms are equal. Euclid’s proof is, of course, different from this modern
one. Namely, if the two parallelograms are P1 = ADBF and P2 = BGCE, with equal
angles at B, Euclid places them so that FB and BG are in a straight line as are EB
and BD. He then completes the third parallelogram P3 = FBEK. Since P1 = P2,
we have P1 : P3 = P2 : P3. But P1 : P3 = DB : BE, since BF is common, and
P2 : P3 = BG : BF , since BE is common. Thus, DB : BE = BG : BF , the desired
conclusion. The converse is proved by reversing the steps.

30. Suppose a : b = f : g and suppose the numbers c, d, . . ., e are the numbers in continued
proportion between a and b. Let r, s, t, . . ., u, v be the smallest numbers in the same
ratio as a, c, d, . . ., e, b. Then r, v are relatively prime and r : v = a : b = f : g. It
follows that f = mr, g = mv for some integer m and that the numbers ms, mt, . . ., mu
are in the same ratio as the original set of numbers. Thus there are at least as many
numbers in continued proportion between f and g as there were between a and b. Since
the same argument works starting with f and g, it follows that there are exactly as many
numbers in continued proportion between f and g as between a and b. Since there is
no integer between n and n + 1, it follows that there cannot be a mean proportional
between any pair of numbers in the ratio (n + 1) : n.
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31. The number ab is the mean proportional between a2 and b2.

32. The numbers a2b and ab2 are the two mean proportionals between a3 and b3.

33. If a2 measures b2, then b2 = ma2 for some integer m. Since every prime number which
divides b2 must divide ma2 and therefore must divide either m or a2, it follows by
counting primes that m must itself be a square. Thus m = n2 and b = na, so a measures
b. Conversely, if a measures b, then b = na and b2 = n2a2, so a2 measures b2.

34. Suppose m factors two different ways as a product of primes: m = pqr · · · s = p′q′r′ · · · s′.
Since p divides pqr · · · s, it must also divide p′q′r′ · · · s′. By VII–30, p must divide one
of the prime factors, say p′. But since both p and p′ are prime, we must have p = p′.
After canceling these two factors from their respective products, we can then repeat the
argument to show that each prime factor on the left is equal to a prime factor on the
right and conversely.

35. One standard modern proof is as follows. Assume there are only finitely many prime
numbers p1, p2, p3, . . ., pn. Let N = p1p2p3 · · · pn + 1. There are then two possibilities.
Either N is prime or N is divisible by a prime other than the given ones, since division
by any of those leaves remainder 1. Both cases contradict the original hypothesis, which
therefore cannot be true.

36. We keep adding powers of 2 until we get a prime. After 1+2+4+8+16+32+64 = 127,
the next sums are 255, 511, 1023, 2047, 4095, and 8191. The first five of these are not
prime (note that 2047 = 23 × 89). But 8191 is prime (check by dividing by all primes
less than

√
8191). So the next perfect number is 8191 × 4096 = 33, 550, 336.

37. Since BC is the side of a decagon, triangle EBC is a 36-72-72 triangle. Thus 6 ECD =
108◦. Since CD, the side of a hexagon, is equal to the radius CE, it follows that triangle
ECD is an isosceles triangle with base angles equal to 36◦. Thus triangle EBD is a
36-72-72 triangle and is similar to triangle EBC. Therefore BD : EC = EB : BC or
BD : CD = CD : BC and the point C divides the line segment BD in extreme and
mean ratio.

38. By exercise 37, if we set d to be the length of the side of a decagon, we have (1+d) : 1 =

1 : d or d2 + d− 1 = 0. It follows that d =
√

5−1

2
. The length p of the side of a pentagon

is (p. 88) p = 1

2

√

10 − 2
√

5. It is then straightforward to show that p2 = 12 + d2 as
asserted.

39. We begin with a rectangle of sides x and y. We then lay off y along x, with the remainder
being x − y = 7. Divide the rectangle with sides 7 and y in half and move one half to
the bottom. We then add the square of side 7

2
to get a square of side y + 7

2
= x− 7

2
with

area 18 + (7

2
)2 = 121

4
. Thus y = 11

2
− 7

2
= 2 and x = 11

2
+ 7

2
= 9.

40. First, to solve the two equations, we set x = a/y and substitute into y2−αx2 = b. After
multiplying by y2, we get the fourth degree equation y4 − αa2 = by2. This is quadratic
in y2, so we can solve to get

y2 =
b +

√
b2 + 4αa2

2
.



Euclid 17

(Note that we only use the plus sign, since y2 must be positive.) Then

y = ±

√

b +
√

b2 + 4αa2

2
.

We can then solve for x:

x = ±

√√
b2 + 4αa2 − b

2α
.

(Of course, since a is assumed positive, we take the positive solution for x when we have
the positive one for y, as well as the negative solution for x with the negative one for y.)
The asymptotes of the hyperbola xy = a are the lines x = 0 and y = 0, and these are
the axes of the hyperbola y2 − αx2 = b. Thus the asymptotes of one hyperbola are the
axes of the other. (Note that the problem as stated is incorrect; it should say that “one
hyperbola has its axes on the asymptotes of the other.”)


