SOLUTIONS MANUAL

System Modeling and Analysis:

Foundations of System Performance Evaluation

Solution Manual (Chapters 2-13)

Hisashi Kobayashi
Princeton University
Brian L. Mark
George Mason University

$\oplus \quad-\oplus$
\oplus

2.2 LITTLE'S FORMULA AND ITS GENERALIZATION

2.2-1. Little's formula.

(a) False : Little's formula holds for arbitrary arrival processes.
(b) False : For the same reason as part (a).
(c) True: Little's formula holds for arbitrary work-conserving disciplines.
(d) True: For the same reason as part (a).
2.2-2. Little's formula for multiple type jobs. Little's law can be be generalized to

$$
\begin{equation*}
\bar{Q}_{r}=\lambda_{r} E\left[W_{r}\right], \tag{2.1}
\end{equation*}
$$

where \bar{Q}_{r} is the mean number of type r jobs in queue and $E\left[W_{r}\right]$ is the mean waiting time for type r jobs in queue, for $r=1, \ldots, R$. The average queue size for a type r job is given by (2.1) for the FCFS queue discipline or any other work-conserving discipline.
2.2-3 Distributions seen by arrivals and departures. In the interval $[0, T]$, for each arrival which causes $Q(t)$ to increase from n to $n+1(n=0,1, \cdots)$, there must be a corresponding departure that causes $Q(t)$ to decrease from $n+1$ to n (since $Q(0)=Q(T)=0$). This implies that the average queue size seen by an arrival is the same as that seen by a departure in the interval $[0, T]$.

BIRTH-AND-DEATH PROCESSES

2.3-1 Superposition of Poisson processes.

(a) We have

$$
\begin{aligned}
P[Y \geq y] & =P\left[X_{1} \geq y, X_{2} \geq y, \ldots, X_{m} \geq y\right] \\
& =P\left[X_{1} \geq y\right] \cdot P\left[X_{2} \geq y\right] \cdots P\left[X_{m} \geq y\right] \\
& =e^{-\lambda_{1} y} \cdot e^{-\lambda_{2} y} \cdots e^{-\lambda_{m} y}=e^{-\sum_{i=1}^{m} \lambda_{i} y}=e^{-\lambda y}
\end{aligned}
$$

where $\lambda \triangleq \sum_{i=1}^{m} \lambda_{i}$. Therefore,

$$
F_{Y}(y)=1-e^{-\lambda y}, \quad y \geq 0
$$

so Y is exponentially distributed with parameter λ.

2 Chapter 2 Basic Queueing Models

(b) Let X_{j} denote the inter-arrival time of the j th arrival stream. Since the arrival streams are independent, so to are the random variables X_{j}, $j=1, \ldots, m$. Furthermore, since the j th arrival stream is Poisson, X_{j} is an exponentially distributed random variable with parameter λ_{j}. The inter-arrival time of the aggregate stream is given by

$$
Y=\min \left\{X_{1}, \ldots, X_{m}\right\}
$$

From the result of part (a), we can conclude that Y is exponentially distributed with parameter $\lambda=\sum_{i=1}^{m} \lambda_{i}$. Therefore, the aggregate stream is a Poisson process with rate λ.

2.3-2. Consistency check of the Poisson process.

(a) Let I_{h} denote a small interval of length h. From (2.3-2) we have

$$
\begin{aligned}
P\left[\text { no arrival in } I_{h}\right] & =P[N(h)=0]=e^{-\lambda h} \\
& =1-\lambda h+\frac{(\lambda h) 2}{2!}-\frac{(\lambda h) 3}{3!}+\frac{(\lambda h) 4}{4!}+\cdots \\
& =1-\lambda h+o(h), \\
P\left[1 \text { arrival in } I_{h}\right] & =P[N(h)=1]=\lambda h e^{-\lambda h} \\
& =\lambda h(1-\lambda h+o(h))=\lambda h+o(h), \\
P\left[\geq 2 \text { arrivals in } I_{h}\right] & =\sum_{j=2}^{\infty} P[N(h)=j]=\sum_{j=2}^{\infty} \frac{(\lambda h)^{j}}{j!} \cdot e^{-\lambda h}=o(h) .
\end{aligned}
$$

(b) Let X_{1} denote the time of the first arrival after the time origin (say $t=0$) and X_{2} denote the inter-arrival time between the first arrival and the second arrival. The RVs X_{1} and X_{2} are both exponentially distributed with parameter λ and have a common cdf:

$$
F_{X}(x)=1-e^{-\lambda x}, \quad x \geq 0
$$

The event of no arrival in the interval I_{h} is equivalent to the event $\left\{X_{1}>h\right\}$. Therefore,

$$
P\left[\text { no arrival in } I_{h}\right]=P\left[X_{1}>h\right]=e^{-\lambda h}=1-\lambda h+o(h)
$$

The event of two or more arrivals in the interval I_{h} is equivalent to the event $\left\{X_{1}+X_{2} \leq h\right\}$. Let $Y=X_{1}+X_{2}$. Then,

$$
\begin{equation*}
P\left[\geq 2 \text { arrivals in } I_{h}\right]=P[Y \leq h]=F_{Y}(h) \tag{2.2}
\end{equation*}
$$

There are several ways of determining the cdf $F_{Y}(y)$. Since X_{1} and X_{2} are independent, the pdf of Y is given by

$$
f_{Y}(y)=f_{X_{1}}(y) \circledast f_{X_{2}}(y)
$$

Copyright © 2009 by H. Kobayashi and B.L. Mark.

One can further show that in general, the cdf of Y is given by

$$
\begin{equation*}
F_{Y}(y)=F_{X_{1}}(y) \circledast f_{X_{2}}(y)=f_{X_{1}}(y) \circledast F_{X_{2}}(y) \tag{2.3}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
F_{Y}(y) & =F_{X}(y) \circledast f_{X}(y)=\int_{0}^{y}\left(1-e^{-\lambda x}\right) \cdot \lambda e^{-\lambda(y-x)} d x \\
& =\lambda e^{-\lambda y} \int_{0}^{y}\left(e^{\lambda x}-1\right) d x=1-e^{-\lambda y}-\lambda y e^{-\lambda y}
\end{aligned}
$$

Returning to (2.2), we obtain
$P\left[2\right.$ or more arrivals in $\left.I_{h}\right]=F_{Y}(h)=1-e^{-\lambda h}-\lambda h e^{-\lambda h}$

$$
=1-(1-\lambda h+o(h))-(\lambda h+o(h))=o(h) .
$$

Finally,

$$
\begin{aligned}
P\left[\text { one arrival in } I_{h}\right] & =1-P\left[\text { no arrival in } I_{h}\right]-P\left[\geq 2 \text { arrivals in } I_{h}\right] \\
& =1-(1-\lambda h+o(h))-o(h)=\lambda h+o(h) .
\end{aligned}
$$

To prove (2.3), note that

$$
\begin{aligned}
F_{Y}(y) & =\int_{0}^{y} f_{X_{1}}(x) \circledast f_{X_{2}}(x) d x=\int_{0}^{y} \int_{0}^{x} f_{X_{1}}(x-t) f_{X_{2}}(t) d t d x \\
& =\int_{0}^{y} \int_{t}^{y} f_{X_{1}}(x-t) f_{X_{2}}(t) d x d t=\int_{0}^{y} \int_{0}^{y-t} f_{X_{1}}(\alpha) d \alpha f_{X_{2}}(t) d t \\
& =\int_{0}^{y} F_{X_{1}}(y-t) f_{X_{2}}(t) d t=F_{X_{1}}(y) \circledast f_{X_{2}}(y)
\end{aligned}
$$

2.3-3. Decomposition of a Poisson process

(a) We are given that $\left\{X_{j}\right\}$ is a sequence of i.i.d. random variables, exponentially distributed with parameter λ. Then for fixed n,

$$
S_{n}=X_{1}+\cdots+X_{n}
$$

and has an Erlang- n distribution. The cdf of S_{n} is given by

$$
\begin{aligned}
F_{S_{n}}(x) & =P\left[S_{n} \leq x\right]=1-P[<n \text { arrivals in an interval of length } x] \\
& =1-\sum_{j=0}^{n-1} P[A(x)=j]=1-e^{-\lambda x} \sum_{j=0}^{n-1} \frac{(\lambda x)^{j}}{j!}
\end{aligned}
$$

Therefore,

$$
P\left[S_{n}>x\right]=\sum_{j=0}^{n-1} P[A(x)=j]=1-e^{-\lambda x} \sum_{j=0}^{n-1} \frac{(\lambda x)^{j}}{j!}
$$

Copyright © 2009 by H. Kobayashi and B.L. Mark.

Hence,

$$
\begin{aligned}
P\left[S_{N}>x\right] & =\sum_{n=1}^{\infty} P\left[S_{N}>s \mid N=n\right] P[N=n] \\
& =\sum_{n=1}^{\infty} e^{-\lambda x} \sum_{j=0}^{n-1} \frac{(\lambda x)^{j}}{j!} \cdot(1-r)^{n-1} r \\
& =r e^{-\lambda x} \sum_{n=0}^{\infty} \sum_{j=0}^{n} \frac{(\lambda x)^{j}}{j!} \cdot(1-r)^{n} \\
& =r e^{-\lambda x} \sum_{j=0}^{\infty} \sum_{n=j}^{\infty} \frac{(\lambda x)^{j}}{j!} \cdot(1-r)^{n} \\
& =r e^{-\lambda x} \sum_{j=0}^{\infty} \sum_{m=0}^{\infty} \frac{(\lambda x)^{j}}{j!} \cdot(1-r)^{m+j} \\
& =r e^{-\lambda x} \sum_{j=0}^{\infty} \frac{\left[(\lambda(1-r) x]^{j}\right.}{j!} \cdot \sum_{m=0}^{\infty}(1-r)^{m} \\
& =r e^{-\lambda x} \cdot e^{\lambda(1-r) x}\left(\frac{1}{r}\right)=e^{-\lambda r x}
\end{aligned}
$$

which shows that S_{N} has an exponential distribution with parameter λr.
(b) In decomposing the Poisson stream into m substreams, each arrival is assigned independently to the k th substream with probability r_{k}, where $\sum_{k=1}^{m} r_{k}=1$. Consider an arrival that is assigned to the k th substream. The number of subsequent arrivals of the original Poisson stream until the next arrival that is assigned to the k th substream is a random variable N_{k} with distribution

$$
P\left[N_{k}=n\right]=\left(1-r_{k}\right)^{n-1} r_{k}, \quad n=0,1, \cdots
$$

Therefore, the inter-arrival time between arrivals assigned to the k th substream is a random variable

$$
S_{N_{k}}=X_{1}+\cdots X_{N_{k}}
$$

where X_{i} are inter-arrival times of the original Poisson process. Hence, the X_{i} are i.i.d. and exponentially distributed with parameter λ. By the result from part (a), $S_{N_{k}}$ is exponentially distributed with parameter $r_{k} \lambda$. Therefore, the k th substream is Poisson with rate $r_{k} \lambda$.
2.3-4. Alternate decomposition of a Poisson stream. Let X_{i} represent the interarrival time between the i th and the $(i+1)$-st arrival. For substream 1, the time between the first and the second arrival is given by

$$
Y=X_{1}+X_{2}+\cdots X_{m}
$$

Copyright © 2009 by H. Kobayashi and B.L. Mark.

The event $\{Y \leq y\}$ is equivalent to the event that there are fewer than m arrivals of the original Poisson stream in an interval of length y, i.e.,

$$
\begin{aligned}
F_{Y}(y) & \triangleq P[Y \leq y]=1-P[<m \text { arrivals in an interval of length } y] \\
& =1-\sum_{j=0}^{m-1} P[A(y)=j]=1-\sum_{j=0}^{m-1} \frac{(\lambda y)^{j}}{j!} e^{-\lambda y}
\end{aligned}
$$

which is an Erlang- m distribution with mean m / λ.

2.3-5. Derivation of the Poisson distribution.

(a) Equation (2.3-9) for $n=0$ can be written as:

$$
\frac{d}{d t} \ln \left(P_{0}(t)\right)=-\lambda,
$$

which is a simple, separable first-order differential equation. Integrating both sides and solving for $P_{0}(t)$ yields $P_{0}(t)=K e^{-\lambda t}$, where the constant K is determined by the initial condition $P_{0}(0)=1$. Hence, $K=1$ and

$$
\begin{equation*}
P_{0}(t)=e^{-\lambda t} \tag{2.4}
\end{equation*}
$$

Substituting (6.5) into (2.3-9) for $n=1$, we obtain

$$
\begin{equation*}
P_{1}^{\prime}(t)+\lambda P_{1}(t)=\lambda e^{-\lambda t} \tag{2.5}
\end{equation*}
$$

Equation (2.5) is a first-order differential equation that can be reduced to a separable form by multiplying both sides by an integrating factor. More generally, let us re-write (2.5) as follows:

$$
\begin{equation*}
P_{1}^{\prime}(t)+R(t) P_{1}(t)=Q(t) \tag{2.6}
\end{equation*}
$$

where in this case, $R(t)=\lambda$ and $Q(t)=\lambda e^{-\lambda t}$. The integrating factor can be obtained by supposing that the left-hand side of (2.6) to be the derivative of a product $\phi(t) P_{1}(t)$, given by

$$
\begin{equation*}
\phi(t) P_{1}^{\prime}(t)+\phi^{\prime}(t) P_{1}(t) \tag{2.7}
\end{equation*}
$$

Multiplying the left-hand side of (2.6) by $\phi(t)$, we have

$$
\begin{equation*}
\phi(t) P_{1}^{\prime}(t)+\phi(t) R(t) P_{1}(t)=\phi(t) Q(t) \tag{2.8}
\end{equation*}
$$

Equating the left-hand side of (2.8) with (2.7), we see that they can be made equal by choosing $\phi(t)$ such that

$$
\begin{equation*}
\phi^{\prime}(t)=\phi(t) R(t) \tag{2.9}
\end{equation*}
$$

This is a simple separable equation that has the solution

$$
\begin{equation*}
\phi(t)=e^{\int R(t) d t} \tag{2.10}
\end{equation*}
$$

Copyright © 2009 by H. Kobayashi and B.L. Mark.

6 Chapter 2 Basic Queueing Models

which is the integrating factor we seek.
After multiplying (2.5) by the integrating factor $\phi(t)$, we obtain:

$$
\begin{equation*}
\frac{d}{d t}\left[e^{\int R(t) d t} P_{1}(t)\right]=Q(t) e^{\int R(t) d t} \tag{2.11}
\end{equation*}
$$

The left-hand side is an exact derivative that can be integrated directly. In particular, we have

$$
\begin{equation*}
\frac{d}{d t}\left[e^{\lambda t} P_{1}(t)\right]=\lambda \tag{2.12}
\end{equation*}
$$

Hence, we obtain (using the fact that $P_{1}(0)=1$):

$$
\begin{equation*}
P_{1}(t)=\lambda t e^{-\lambda t} \tag{2.13}
\end{equation*}
$$

To proceed by induction, we postulate the result

$$
\begin{equation*}
P_{n}(t)=\frac{(\lambda t)^{n}}{n!} e^{-\lambda t} \tag{2.14}
\end{equation*}
$$

and show that the result holds for $P_{n+1}(t)$. From (4.61), we have:

$$
P_{n+1}^{\prime}(t)+\lambda P_{n+1}(t)=\lambda P_{n}(t)=\lambda \frac{(\lambda t)^{n}}{n!} e^{-\lambda t}
$$

Multiplying both sides by the integrating factor $\phi(t)=e^{\lambda t}$, we have:

$$
\frac{d}{d t}\left[e^{\lambda t} P_{n+1}(t)\right]=\lambda \frac{(\lambda t)^{n}}{n!}
$$

Integrating both sides and using the fact that $P_{n+1}(0)=0$, we obtain the required result:

$$
P_{n+1}(t)=\frac{(\lambda t)^{(n+1)}}{(n+1)!} e^{-\lambda t}
$$

Thus, by induction, we have shown the validity of (2.14) for all $n \geq 0$.
(b) Taking the Laplace transform of the system of differential equations (4.61) and (4.62), we have:

$$
\begin{align*}
s P_{n}^{*}(s)-P_{n}(0) & =-\lambda P_{n}^{*}(s)+\lambda P_{n-1}^{*}(s), \quad n \geq 1 \tag{2.15}\\
s P_{0}^{*}(s)-P_{0}(0) & =-\lambda P_{0}^{*}(s) \tag{2.16}
\end{align*}
$$

From (2.16) and the fact that $P_{0}(0)=1$, we obtain $P_{0}^{*}(s)=\frac{1}{s+\lambda}$. Noting that $P_{n}(0)=0$ in (2.15) we have, in particular for $n=1$,

$$
(s+\lambda) P_{1}^{*}(s)=\lambda P_{0}^{*}(s)
$$

Copyright © 2009 by H. Kobayashi and B.L. Mark.

Therefore, $P_{1}^{*}(s)=\frac{\lambda}{(s+\lambda)^{2}}$. Using induction, it is straightforward to show that

$$
\begin{equation*}
P_{n}^{*}(s)=\frac{\lambda^{n}}{(s+\lambda)^{n+1}} \tag{2.17}
\end{equation*}
$$

Inverting (2.17), we obtain the desired result:

$$
P_{n}(t)=\frac{(\lambda t)^{n}}{n!} e^{-\lambda t}
$$

where we have used the following Laplace transform properties:

$$
\begin{align*}
\mathcal{L}^{-1}\left\{f^{*}(s+a)\right\} & =f(t) e^{-a t} \tag{2.18}\\
\mathcal{L}^{-1}\left\{\frac{1}{s^{n+1}}\right\} & =\frac{t^{n}}{n!} \tag{2.19}
\end{align*}
$$

2.3-6. Uniformity of Poisson arrivals.

(a) Suppose there are n arrivals in the interval $(0, T]$. The joint probability that there are i arrivals in a subinterval $(0, t]$, one arrival in $(t, t+h]$, and $n-i-1$ arrivals in $(t+h, T]$ is the product of three factors obtained from the Poisson distribution:

$$
\begin{aligned}
& \left(\frac{(\lambda t)^{i}}{i!} e^{-\lambda t}\right)\left(\lambda h e^{-\lambda h}\right)\left(\frac{[\lambda(T-t-h)]^{n-i-1}}{(n-i-1)!} e^{-\lambda(T-t-h)}\right) \\
& =\frac{\lambda^{n} h e^{-\lambda T}}{(n-1)!}\binom{n-1}{i} t^{i}(T-t-h)^{n-i-1}
\end{aligned}
$$

Summing the above expression over the possible values of i, we find that the joint probability that there are n arrivals in $(t, T]$ with one arrival in $(t, t+h]$ is

$$
\begin{equation*}
\frac{\lambda^{n} h e^{-\lambda T}}{(n-1)!} \sum_{i=0}^{n}\binom{n-1}{i} t^{i}(T-t-h)^{n-i-1}=\frac{[\lambda(T-h)]^{n-1}}{(n-1)!} \lambda h e^{-\lambda T} \tag{2.20}
\end{equation*}
$$

where we used the binomial formula

$$
\sum_{i=0}^{k}\binom{k}{i} x^{i} y^{k-i}=(x+y)^{k}
$$

Since h is an infinitesimal interval, we rewrite (2.20) as
$P[n$ arrivals in $(0, T], 1$ arrival in $(t, t+h]]=\frac{(\lambda T)^{n-1}}{(n-1)!} \lambda h e^{-\lambda T}+o(h)$,
obtaining the conditional probability

$$
\begin{aligned}
P[1 \text { arrival in }(t, t+h] \mid n \text { arrivals in }(0, T]] & =\frac{\frac{(\lambda T)^{n-1}}{(n-1)!} \lambda h e^{-\lambda T}+o(h)}{\frac{(\lambda T)^{n}}{n!} e^{-\lambda T}} \\
& =\frac{n h}{T}+o(h)
\end{aligned}
$$

Copyright © 2009 by H. Kobayashi and B.L. Mark.

8 Chapter 2 Basic Queueing Models

(b) Since the n arrivals are independent, any one of them will fall into the interval $(t, t+h]$ with equal chance. Thus, the conditional probability that a call arrives in $(t, t+h]$, given that it is one of n arrivals in $(0, T]$ is $\frac{h}{T}$. This final expression is independent of n, hence the conditional probability is unconditional. Thus, we have proved (2.3-34).
2.3-7. Pure birth process. When $\lambda(n)=\lambda$ and $\mu(n)=0$ for all $n \geq 0$, the differential-difference equations of the B-D process become:

$$
\begin{align*}
p_{n}^{\prime}(t) & =-\lambda p_{n}(t)+\lambda p_{n-1}(t), \quad n=1,2, \cdots \tag{2.21}\\
p_{0}^{\prime}(t) & =-\lambda p_{0}(t) \tag{2.22}
\end{align*}
$$

Using the same procedure as in Exercise 2.3-6, these equations can be solved to obtain the Poisson distribution:

$$
p_{n}(t)=\frac{(\lambda t)^{n}}{n!} e^{-\lambda t}, \quad n=0,1, \cdots
$$

2.3-8. Time-dependent solution. When $\mu(n)=0$ for all $n \geq 0$, but statedependent birth rates $\lambda(n)$ are permitted, the differential-difference equations of the B-D process become:

$$
\begin{align*}
p_{n}^{\prime}(t) & =-\lambda(n) p_{n}(t)+\lambda(n-1) p_{n-1}(t), \quad n=1,2, \cdots, \tag{2.23}\\
p_{0}^{\prime}(t) & =-\lambda p_{0}(t) . \tag{2.24}
\end{align*}
$$

If we multiply both sides of (2.23) by the integrating factor $e^{\lambda(n) t}$, we obtain:

$$
\begin{equation*}
\frac{d}{d t}\left[e^{\lambda(n) t} p_{n}(t)\right]=\lambda(n-1) p_{n-1}(t) e^{\lambda(n) t} \tag{2.25}
\end{equation*}
$$

After integrating both sides from 0 to t and re-arranging, we obtain:

$$
\begin{equation*}
p_{n}(t)=e^{-\lambda(n) t}\left[\lambda(n-1) \int_{0}^{t} p_{n-1}(x) e^{\lambda(n) x} d x+K\right] \tag{2.26}
\end{equation*}
$$

where K is a constant determined by the initial condition $p_{n}(0)=K$.
2.3-9. Pure death process. When $\lambda(n)=0$ and $\mu(n)=\mu$ for all $n \geq 0$, the differential-difference equations of the B-D process become:

$$
\begin{align*}
p_{N_{0}}^{\prime}(t) & =-\mu p_{N_{0}}(t), \tag{2.27}\\
p_{n}^{\prime}(t) & =-\mu p_{n}(t)+\mu p_{n+1}(t), \quad n=1, \cdots, N_{0}-1 \tag{2.28}\\
p_{0}^{\prime}(t) & =\mu p_{1}(t) . \tag{2.29}
\end{align*}
$$

Solving (2.27), we obtain

$$
\begin{equation*}
p_{N_{0}}(t)=e^{-\mu t} \tag{2.30}
\end{equation*}
$$

Copyright © 2009 by H. Kobayashi and B.L. Mark.

Similar to the approach in Problem 4.7, we can obtain from (2.28) and (2.29), the following result:

$$
\begin{equation*}
p_{n}(t)=\mu e^{-\mu t} \int_{0}^{t} e^{\mu x} p_{n+1}(x) d x, \quad n=1, \cdots, N_{0}-1 \tag{2.31}
\end{equation*}
$$

Applying (2.31) successively for $n=1,2, \cdots, N_{0}-1$, we obtain:

$$
p_{n}(t)=\frac{(\mu t)^{N_{0}-n}}{\left(N_{0}-n\right)!} e^{-\mu t}, \quad n=1, \cdots N_{0}
$$

For each t we have:

$$
p_{0}(t)+\sum_{n=1}^{N_{0}} p_{n}(t)=1
$$

Thus, we find that

$$
p_{0}(t)=1-\sum_{n=1}^{N_{0}} \frac{(\mu t)^{N_{0}-n}}{\left(N_{0}-n\right)!} e^{-\mu t}=1-\sum_{n=0}^{N_{0}-1} \frac{(\mu t)^{n}}{n!} e^{-\mu t} .
$$

2.3-10 The time-dependent PGF. Multiply both sides of (2.21) and (2.22) by z^{n} and sum from $n=0$ to ∞ to obtain:

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{n}^{\prime}(t) z^{n}=-\lambda \sum_{n=0}^{\infty} p_{n}(t) z^{n}+\lambda \sum_{n=1}^{\infty} p_{n-1}(t) z^{n} \tag{2.32}
\end{equation*}
$$

which is equivalent to

$$
\begin{align*}
\frac{\partial}{\partial t} G(z, t) & =-\lambda G(z, t)+\lambda z G(z, t) \tag{2.33}\\
& =-\lambda(1-z) G(z, t) \tag{2.34}
\end{align*}
$$

Equation (2.34) is a simple, separable first order differential equation whose solution is:

$$
\begin{equation*}
G(z, t)=e^{-\lambda(1-z) t}=\sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} z^{n} \tag{2.35}
\end{equation*}
$$

Hence,

$$
p_{n}(t)=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}
$$

2.3-11. Time-dependent solution for a certain BD process. When $\lambda_{n}=\lambda$ and $\mu_{n}=n \mu$ for all n, equations (2.3-46) become

$$
\begin{align*}
p_{n}^{\prime}(t) & =-(\lambda+n \mu) p_{n}(t)+\lambda p_{n-1}(t)+(n+1) \mu p_{n+1}(t), \quad n=1,2,3, \cdots \tag{2.36}\\
p_{0}^{\prime}(t) & =-\lambda p_{0}(t)+\mu p_{1}(t) . \tag{2.37}
\end{align*}
$$

Copyright © 2009 by H. Kobayashi and B.L. Mark.

10 Chapter 2 Basic Queueing Models

Multiply both sides of (2.36) by z^{n}, sum from $n=1$ to ∞ and then add (2.37) to obtain

$$
\begin{align*}
\sum_{n=0}^{\infty} p_{n}^{\prime}(t) z^{n} & =-\lambda \sum_{n=0}^{\infty} p_{n}(t) z^{n}-\mu z \sum_{n=0}^{\infty} n p_{n}(t) z^{n-1} \\
& +\lambda z \sum_{n=0}^{\infty} p_{n}(t) z^{n}+\mu \sum_{n=0}^{\infty} n p_{n}(t) z^{n-1} \tag{2.38}
\end{align*}
$$

Noting that

$$
\frac{\partial}{\partial t} G(z, t)=\sum_{n=0}^{\infty} p_{n}^{\prime}(t) z^{n} \text { and } \frac{\partial}{\partial z} G(z, t)=\sum_{n=0}^{\infty} n p_{n}(t) z^{n-1}
$$

we can rewrite (2.38) as

$$
\begin{equation*}
\frac{\partial}{\partial t} G(z, t)=(z-1)\left[\lambda G(z, t)+\mu \frac{\partial}{\partial z} G(z, t)\right] \tag{2.39}
\end{equation*}
$$

One can easily verify by direct substitution that

$$
\begin{equation*}
G(z, t)=\exp \left\{\frac{\lambda}{\mu}\left(1-e^{-\mu t}\right)(z-1)\right\} \tag{2.40}
\end{equation*}
$$

is the unique solution to (2.39).
Since $p_{n}(t)$ is the coefficient of z^{n} in the power series expansion of $G(z, t)$, we have

$$
\begin{equation*}
p_{n}(t)=\left.\frac{1}{n!} \frac{\partial^{n}}{\partial z^{n}} G(z, t)\right|_{z=0} \tag{2.41}
\end{equation*}
$$

From (2.40), we obtain that

$$
\frac{\partial}{\partial z} G(z, t)=\frac{\lambda}{\mu}\left(1-e^{-\mu t}\right) G(z, t)
$$

which implies that

$$
\begin{equation*}
\frac{\partial^{n}}{\partial z^{n}} G(z, t)=\left[\frac{\lambda}{\mu}\left(1-e^{-\mu t}\right)\right]^{n} G(z, t) \tag{2.42}
\end{equation*}
$$

From (2.40), (2.41), and (2.42), we obtain

$$
p_{n}(t)=\left.\frac{\left[\frac{\lambda}{\mu}\left(1-e^{-\mu t}\right)\right]^{n}}{n!} G(z, t)\right|_{z=0}=\frac{\left[\frac{\lambda}{\mu}\left(1-e^{-\mu t}\right)\right]^{n}}{n!} \exp \left\{\frac{-\lambda}{\mu}\left(1-e^{-\mu t}\right)\right\}
$$

2.4 BIRTH-AND-DEATH QUEUEING MODELS

2.4-1. Splitting a Poisson stream.

Copyright © 2009 by H. Kobayashi and B.L. Mark.
(a) As shown in Section 2.3, the k-th substream is a Poisson process with rate $p_{k} \lambda, k=1,2, \ldots, K$, and the K Poisson streams are statistically independent.
(b) The interarrival time T of each substream is K-stage Erlangian distributed with mean K / λ.

$$
F_{T}(t)=1-e^{-\lambda t} \sum_{j=0}^{K-1} \frac{(\lambda t)^{j}}{j!}, \quad t \geq 0
$$

2.4-2. Erlangian distribution.

(a) The LT of an exponential random variable with mean μ is given by

$$
f^{*}(s)=\frac{\mu}{s+\mu}
$$

Therefore, the LT of Y_{i} is

$$
f_{Y}^{*}(s)=\frac{n \lambda}{s+n \lambda}
$$

Since $X=Y_{1}+\cdots+Y_{n}$,

$$
\begin{equation*}
f_{X}^{*}(s)=\left[f_{Y}^{*}(s)\right]^{n}=\left(\frac{n \lambda}{s+n \lambda}\right)^{n} \tag{2.43}
\end{equation*}
$$

(b) The pdf of X can be obtained by inverting the LT given in (2.43). Using properties of the LT we have

$$
\begin{aligned}
f_{X}(x) & =(n \lambda)^{n} \mathcal{L}^{-1}\left[\frac{1}{(s+n \lambda)^{n}}\right]=(n \lambda)^{n} e^{-\lambda n x} \mathcal{L}^{-1}\left[\frac{1}{s^{n}}\right] \\
& =(n \lambda)^{n} e^{-\lambda n x} \cdot \frac{x^{n-1}}{(n-1)!}=\frac{(n \lambda x)^{n}}{x(n-1)!} e^{-\lambda n x}
\end{aligned}
$$

(c) The mean of X is

$$
E[X]=n E\left[Y_{i}\right]=n \frac{1}{n \lambda}=\frac{1}{\lambda}
$$

The variance of X is

$$
\operatorname{Var}[X]=n \operatorname{Var}\left[Y_{i}\right]=n \frac{1}{(n \lambda) 2}=\frac{1}{n \lambda 2}
$$

2.4-3. Erlangian distribution (continued). The service completions of customers 1 through n may be considered as arrivals of a Poisson process, since the service times are exponentially distributed and i.i.d. The event that the

Copyright (c)2009 by H. Kobayashi and B.L. Mark.

12 Chapter 2 Basic Queueing Models

total time to serve n customers, W, exceeds some value x is equivalent to the event that there are $n-1$ or fewer arrivals in the interval $[0, x]$, i.e.,

$$
P[W>x \mid n]=P[n-1 \text { or fewer arrivals in }[0, x)]=\sum_{j=0}^{n-1} \frac{(\mu x)^{j}}{j!} e^{-\mu x}
$$

Hence,

$$
F_{W}(x \mid n)=P[W \leq x \mid n]=1-\sum_{j=0}^{n-1} \frac{(\mu x)^{j}}{j!} e^{-\mu x}
$$

2.4-4. Balance equation of $M / M / 1$.

(a) The detailed balance equation for the $M / M / 1$ queue equates the probability flow rate from state $n-1$ to state n with that from state n to state $n-1$. The flow rates must be equal if the queue reaches a stable equilibrium. Therefore, the balance equations are given by

$$
\begin{equation*}
\mu p_{n}=\lambda p_{n-1}, \quad n=1,2, \cdots \tag{2.44}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
p_{n}=\rho p_{n-1}, \quad n=1,2, \cdots, \tag{2.45}
\end{equation*}
$$

where $\rho=\lambda / \mu$.
(b) Multiply both sides of (2.45) by z^{n} and sum from $n=1$ to ∞ to obtain

$$
\begin{equation*}
\sum_{n=1}^{\infty} p_{n} z^{n}=\rho \sum_{n=1}^{\infty} p_{n-1} z^{n} \tag{2.46}
\end{equation*}
$$

Simplifying the above equation, we have

$$
\begin{equation*}
G(z)-p_{0}=\rho z G(z) \tag{2.47}
\end{equation*}
$$

Solving for $G(z)$, we have

$$
G(z)=\frac{p_{0}}{1-\rho z}
$$

Using the fact that $G(z)=1$, we find that $p_{0}=1-\rho$. Hence,

$$
G(z)=\frac{1-\rho}{1-\rho z}
$$

(c) Expanding $G(z)$ as a power series, we find that

$$
G(z)=\sum_{n=0}^{\infty}(1-\rho) \rho^{n} z^{n}
$$

Hence, we see that $p_{n}=(1-\rho) \rho^{n}$ for $n=0,1, \cdots$.
Copyright © 2009 by H. Kobayashi and B.L. Mark.

2.4-5. PASTA and related properties in the $M / M / 1$ queue.

(a) Due to the uniformity property of the Poisson process, the proportion of arriving calls in the interval $(0, T)$ that find n in the system can be expressed as the following ratio:

$$
a_{n}=\frac{\text { expected number of arrivals in }(0, T) \text { that find } n \text { in the system }}{\text { expected number of arriving calls in }(0, T)} .
$$

The expected number of calls during $(0, T)$ that find exactly n calls in the system is $\lambda p_{n} T$. Thus,

$$
a_{n}=\frac{\lambda p_{n} T}{\sum_{i=0}^{\infty} \lambda p_{i} T}=\frac{\lambda p_{n} T}{\lambda T}=p_{n}
$$

(b) From Problem (2.2-1), we know that $a_{n}=d_{n}$ holds for any workconserving queueing discipline. Hence, in this case $p_{n}=d_{n}$, i.e., the probability distribution of the number of system seen by departing customers is $\left\{p_{n}\right\}$.
(c) If the arrival process is state-dependent, i.e., the arrival rate $\lambda(n)$ depends on the state of the system, then

$$
a_{n}=\frac{\lambda(n) p_{n} T}{\sum_{i=0}^{\infty} \lambda(i) p_{i} T}=\frac{\lambda(n) p_{n}}{\sum_{i=0}^{\infty} \lambda(i) p_{i}},
$$

which does not equal p_{n} in general.
2.4-6. Derivation of the waiting time distribution. From (2.4-25) we have

$$
\begin{aligned}
F_{W}(x) & =1-\rho+(1-\rho) \sum_{n=1}^{\infty} \rho^{n}-(1-\rho) e^{-\mu x} \sum_{n=1}^{\infty} \sum_{j=0}^{n-1} \rho^{n} \frac{(\mu x)^{j}}{j!} \\
& =1-(1-\rho) e^{-\mu x} \sum_{j=0}^{\infty} \sum_{n=j+1}^{\infty} \rho^{n} \frac{(\mu x)^{j}}{j!} \\
& =1-(1-\rho) e^{-\mu x} \sum_{j=0}^{\infty} \frac{\rho^{j+1}}{1-\rho} \frac{(\mu x)^{j}}{j!}=1-\rho e^{-\mu x} \sum_{j=0}^{\infty} \frac{(\rho \mu x)^{j}}{j!} \\
& =1-\rho e^{-\mu(1-\rho) x}
\end{aligned}
$$

2.4-7. Laplace transform method. The waiting time experienced by a call that arrives with $n \geq 1$ calls ahead of it in the system is given by:

$$
\begin{equation*}
W=R_{1}+S_{2}+\cdots+S_{n} \tag{2.48}
\end{equation*}
$$

where $R_{1}, S_{2}, \cdots, S_{n}$ are i.i.d. according to an exponential distribution of parameter μ. If there are 0 calls ahead of the arriving call, its waiting time will be 0 . That is, the conditional pdf of W given $N=0$ is given by $f_{W}(t \mid 0)=\delta(t)$,

Copyright © 2009 by H. Kobayashi and B.L. Mark.

