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C H A P T E R 2

Basic Queueing Models

2.2 LITTLE’S FORMULA AND ITS GENERALIZATION

2.2-1. Little’s formula.

(a) False : Little’s formula holds for arbitrary arrival processes.
(b) False : For the same reason as part (a).
(c) True: Little’s formula holds for arbitrary work-conserving disciplines.
(d) True: For the same reason as part (a).

2.2-2. Little’s formula for multiple type jobs. Little’s law can be be generalized
to

Qr = λrE[Wr], (2.1)

where Qr is the mean number of type r jobs in queue and E[Wr] is the mean
waiting time for type r jobs in queue, for r = 1, . . . , R. The average queue
size for a type r job is given by (2.1) for the FCFS queue discipline or any
other work-conserving discipline.

2.2-3 Distributions seen by arrivals and departures. In the interval [0, T ],
for each arrival which causes Q(t) to increase from n to n + 1 (n = 0, 1, · · · ),
there must be a corresponding departure that causes Q(t) to decrease from
n + 1 to n (since Q(0) = Q(T ) = 0). This implies that the average queue
size seen by an arrival is the same as that seen by a departure in the interval
[0, T ].

BIRTH-AND-DEATH PROCESSES

2.3-1 Superposition of Poisson processes.

(a) We have

P [Y ≥ y] = P [X1 ≥ y, X2 ≥ y, . . . , Xm ≥ y]
= P [X1 ≥ y] · P [X2 ≥ y] · · ·P [Xm ≥ y]

= e−λ1y · e−λ2y · · · e−λmy = e−
∑m

i=1
λiy = e−λy,

where λ ,
∑m

i=1 λi. Therefore,

FY (y) = 1− e−λy, y ≥ 0,

so Y is exponentially distributed with parameter λ.

1
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2 Chapter 2 Basic Queueing Models

(b) Let Xj denote the inter-arrival time of the jth arrival stream. Since
the arrival streams are independent, so to are the random variables Xj ,
j = 1, . . . ,m. Furthermore, since the jth arrival stream is Poisson, Xj

is an exponentially distributed random variable with parameter λj . The
inter-arrival time of the aggregate stream is given by

Y = min{X1, . . . , Xm}.

From the result of part (a), we can conclude that Y is exponentially dis-
tributed with parameter λ =

∑m
i=1 λi. Therefore, the aggregate stream

is a Poisson process with rate λ.

2.3-2. Consistency check of the Poisson process.

(a) Let Ih denote a small interval of length h. From (2.3-2) we have

P [no arrival in Ih] = P [N(h) = 0] = e−λh

= 1− λh +
(λh)2

2!
− (λh)3

3!
+

(λh)4
4!

+ · · ·
= 1− λh + o(h),

P [1 arrival in Ih] = P [N(h) = 1] = λhe−λh

= λh(1− λh + o(h)) = λh + o(h),

P [≥ 2 arrivals in Ih] =
∞∑

j=2

P [N(h) = j] =
∞∑

j=2

(λh)j

j!
· e−λh = o(h).

(b) Let X1 denote the time of the first arrival after the time origin (say t = 0)
and X2 denote the inter-arrival time between the first arrival and the
second arrival. The RVs X1 and X2 are both exponentially distributed
with parameter λ and have a common cdf:

FX(x) = 1− e−λx, x ≥ 0.

The event of no arrival in the interval Ih is equivalent to the event
{X1 > h}. Therefore,

P [no arrival in Ih] = P [X1 > h] = e−λh = 1− λh + o(h).

The event of two or more arrivals in the interval Ih is equivalent to the
event {X1 + X2 ≤ h}. Let Y = X1 + X2. Then,

P [≥ 2 arrivals in Ih] = P [Y ≤ h] = FY (h). (2.2)

There are several ways of determining the cdf FY (y). Since X1 and X2

are independent, the pdf of Y is given by

fY (y) = fX1(y) ~ fX2(y).

Copyright c©2009 by H. Kobayashi and B.L. Mark.
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Chapter 2 Basic Queueing Models 3

One can further show that in general, the cdf of Y is given by

FY (y) = FX1(y) ~ fX2(y) = fX1(y) ~ FX2(y). (2.3)

Therefore,

FY (y) = FX(y) ~ fX(y) =
∫ y

0

(1− e−λx) · λe−λ(y−x)dx

= λe−λy

∫ y

0

(eλx − 1)dx = 1− e−λy − λye−λy.

Returning to (2.2), we obtain

P [2 or more arrivals in Ih] = FY (h) = 1− e−λh − λhe−λh

= 1− (1− λh + o(h))− (λh + o(h)) = o(h).

Finally,

P [one arrival in Ih] = 1− P [no arrival in Ih]− P [≥ 2 arrivals in Ih]
= 1− (1− λh + o(h))− o(h) = λh + o(h).

To prove (2.3), note that

FY (y) =
∫ y

0

fX1(x) ~ fX2(x) dx =
∫ y

0

∫ x

0

fX1(x− t)fX2(t) dt dx

=
∫ y

0

∫ y

t

fX1(x− t)fX2(t) dx dt =
∫ y

0

∫ y−t

0

fX1(α) dα fX2(t) dt

=
∫ y

0

FX1(y − t)fX2(t) dt = FX1(y) ~ fX2(y).

2.3-3. Decomposition of a Poisson process

(a) We are given that {Xj} is a sequence of i.i.d. random variables, expo-
nentially distributed with parameter λ. Then for fixed n,

Sn = X1 + · · ·+ Xn

and has an Erlang-n distribution. The cdf of Sn is given by

FSn(x) = P [Sn ≤ x] = 1− P [< n arrivals in an interval of length x]

= 1−
n−1∑

j=0

P [A(x) = j] = 1− e−λx
n−1∑

j=0

(λx)j

j!
.

Therefore,

P [Sn > x] =
n−1∑

j=0

P [A(x) = j] = 1− e−λx
n−1∑

j=0

(λx)j

j!
.

Copyright c©2009 by H. Kobayashi and B.L. Mark.
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4 Chapter 2 Basic Queueing Models

Hence,

P [SN > x] =
∞∑

n=1

P [SN > s|N = n]P [N = n]

=
∞∑

n=1

e−λx
n−1∑

j=0

(λx)j

j!
· (1− r)n−1r

= re−λx
∞∑

n=0

n∑

j=0

(λx)j

j!
· (1− r)n

= re−λx
∞∑

j=0

∞∑

n=j

(λx)j

j!
· (1− r)n

= re−λx
∞∑

j=0

∞∑
m=0

(λx)j

j!
· (1− r)m+j

= re−λx
∞∑

j=0

[(λ(1− r)x]j

j!
·
∞∑

m=0

(1− r)m

= re−λx · eλ(1−r)x

(
1
r

)
= e−λrx

which shows that SN has an exponential distribution with parameter λr.

(b) In decomposing the Poisson stream into m substreams, each arrival is
assigned independently to the kth substream with probability rk, where∑m

k=1 rk = 1. Consider an arrival that is assigned to the kth substream.
The number of subsequent arrivals of the original Poisson stream until
the next arrival that is assigned to the kth substream is a random variable
Nk with distribution

P [Nk = n] = (1− rk)n−1rk, n = 0, 1, · · · .

Therefore, the inter-arrival time between arrivals assigned to the kth
substream is a random variable

SNk
= X1 + · · ·XNk

,

where Xi are inter-arrival times of the original Poisson process. Hence,
the Xi are i.i.d. and exponentially distributed with parameter λ. By the
result from part (a), SNk

is exponentially distributed with parameter
rkλ. Therefore, the kth substream is Poisson with rate rkλ.

2.3-4. Alternate decomposition of a Poisson stream. Let Xi represent the
interarrival time between the ith and the (i + 1)-st arrival. For substream 1,
the time between the first and the second arrival is given by

Y = X1 + X2 + · · ·Xm.

Copyright c©2009 by H. Kobayashi and B.L. Mark.
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Chapter 2 Basic Queueing Models 5

The event {Y ≤ y} is equivalent to the event that there are fewer than m
arrivals of the original Poisson stream in an interval of length y, i.e.,

FY (y) , P [Y ≤ y] = 1− P [< m arrivals in an interval of length y]

= 1−
m−1∑

j=0

P [A(y) = j] = 1−
m−1∑

j=0

(λy)j

j!
e−λy,

which is an Erlang-m distribution with mean m/λ.

2.3-5. Derivation of the Poisson distribution.

(a) Equation (2.3-9) for n = 0 can be written as:

d

dt
ln(P0(t)) = −λ,

which is a simple, separable first-order differential equation. Integrating
both sides and solving for P0(t) yields P0(t) = Ke−λt, where the constant
K is determined by the initial condition P0(0) = 1. Hence, K = 1 and

P0(t) = e−λt. (2.4)

Substituting (6.5) into (2.3-9) for n = 1, we obtain

P ′1(t) + λP1(t) = λe−λt. (2.5)

Equation (2.5) is a first-order differential equation that can be reduced
to a separable form by multiplying both sides by an integrating factor.
More generally, let us re-write (2.5) as follows:

P ′1(t) + R(t)P1(t) = Q(t), (2.6)

where in this case, R(t) = λ and Q(t) = λe−λt. The integrating factor
can be obtained by supposing that the left-hand side of (2.6) to be the
derivative of a product φ(t)P1(t), given by

φ(t)P ′1(t) + φ′(t)P1(t). (2.7)

Multiplying the left-hand side of (2.6) by φ(t), we have

φ(t)P ′1(t) + φ(t)R(t)P1(t) = φ(t)Q(t). (2.8)

Equating the left-hand side of (2.8) with (2.7), we see that they can be
made equal by choosing φ(t) such that

φ′(t) = φ(t)R(t). (2.9)

This is a simple separable equation that has the solution

φ(t) = e
∫

R(t)dt, (2.10)

Copyright c©2009 by H. Kobayashi and B.L. Mark.
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6 Chapter 2 Basic Queueing Models

which is the integrating factor we seek.
After multiplying (2.5) by the integrating factor φ(t), we obtain:

d

dt

[
e
∫

R(t)dtP1(t)
]

= Q(t)e
∫

R(t)dt. (2.11)

The left-hand side is an exact derivative that can be integrated directly.
In particular, we have

d

dt
[eλtP1(t)] = λ. (2.12)

Hence, we obtain (using the fact that P1(0) = 1):

P1(t) = λte−λt. (2.13)

To proceed by induction, we postulate the result

Pn(t) =
(λt)n

n!
e−λt (2.14)

and show that the result holds for Pn+1(t). From (4.61), we have:

P ′n+1(t) + λPn+1(t) = λPn(t) = λ
(λt)n

n!
e−λt.

Multiplying both sides by the integrating factor φ(t) = eλt, we have:

d

dt
[eλtPn+1(t)] = λ

(λt)n

n!
.

Integrating both sides and using the fact that Pn+1(0) = 0, we obtain
the required result:

Pn+1(t) =
(λt)(n+1)

(n + 1)!
e−λt.

Thus, by induction, we have shown the validity of (2.14) for all n ≥ 0.

(b) Taking the Laplace transform of the system of differential equations
(4.61) and (4.62), we have:

sP ∗n(s)− Pn(0) = −λP ∗n(s) + λP ∗n−1(s), n ≥ 1 (2.15)
sP ∗0 (s)− P0(0) = −λP ∗0 (s). (2.16)

From (2.16) and the fact that P0(0) = 1, we obtain P ∗0 (s) = 1
s+λ . Noting

that Pn(0) = 0 in (2.15) we have, in particular for n = 1,

(s + λ)P ∗1 (s) = λP ∗0 (s).

Copyright c©2009 by H. Kobayashi and B.L. Mark.
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Chapter 2 Basic Queueing Models 7

Therefore, P ∗1 (s) = λ
(s+λ)2 . Using induction, it is straightforward to

show that

P ∗n(s) =
λn

(s + λ)n+1
(2.17)

Inverting (2.17), we obtain the desired result:

Pn(t) =
(λt)n

n!
e−λt,

where we have used the following Laplace transform properties:

L−1{f∗(s + a)} = f(t)e−at (2.18)

L−1

{
1

sn+1

}
=

tn

n!
. (2.19)

2.3-6. Uniformity of Poisson arrivals.

(a) Suppose there are n arrivals in the interval (0, T ]. The joint probability
that there are i arrivals in a subinterval (0, t], one arrival in (t, t + h],
and n− i−1 arrivals in (t+h, T ] is the product of three factors obtained
from the Poisson distribution:(

(λt)i

i!
e−λt

) (
λhe−λh

) (
[λ(T − t− h)]n−i−1

(n− i− 1)!
e−λ(T−t−h)

)

=
λnhe−λT

(n− 1)!

(
n− 1

i

)
ti(T − t− h)n−i−1

Summing the above expression over the possible values of i, we find that
the joint probability that there are n arrivals in (t, T ] with one arrival
in (t, t + h] is

λnhe−λT

(n− 1)!

n∑

i=0

(
n− 1

i

)
ti(T − t− h)n−i−1 =

[λ(T − h)]n−1

(n− 1)!
λhe−λT ,

(2.20)
where we used the binomial formula

k∑

i=0

(
k

i

)
xiyk−i = (x + y)k.

Since h is an infinitesimal interval, we rewrite (2.20) as

P [n arrivals in (0, T ], 1 arrival in (t, t + h]] =
(λT )n−1

(n− 1)!
λhe−λT + o(h),

obtaining the conditional probability

P [1 arrival in (t, t + h]|n arrivals in (0, T ]] =
(λT )n−1

(n−1)! λhe−λT + o(h)
(λT )n

n! e−λT

=
nh

T
+ o(h).

Copyright c©2009 by H. Kobayashi and B.L. Mark.
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8 Chapter 2 Basic Queueing Models

(b) Since the n arrivals are independent, any one of them will fall into the
interval (t, t + h] with equal chance. Thus, the conditional probability
that a call arrives in (t, t + h], given that it is one of n arrivals in (0, T ]
is h

T . This final expression is independent of n, hence the conditional
probability is unconditional. Thus, we have proved (2.3-34).

2.3-7. Pure birth process. When λ(n) = λ and µ(n) = 0 for all n ≥ 0, the
differential-difference equations of the B-D process become:

p′n(t) = −λpn(t) + λpn−1(t), n = 1, 2, · · · , (2.21)
p′0(t) = −λp0(t). (2.22)

Using the same procedure as in Exercise 2.3-6, these equations can be solved
to obtain the Poisson distribution:

pn(t) =
(λt)n

n!
e−λt, n = 0, 1, · · · .

2.3-8. Time-dependent solution. When µ(n) = 0 for all n ≥ 0, but state-
dependent birth rates λ(n) are permitted, the differential-difference equations
of the B-D process become:

p′n(t) = −λ(n)pn(t) + λ(n− 1)pn−1(t), n = 1, 2, · · · , (2.23)
p′0(t) = −λp0(t). (2.24)

If we multiply both sides of (2.23) by the integrating factor eλ(n)t, we obtain:

d

dt
[eλ(n)tpn(t)] = λ(n− 1)pn−1(t)eλ(n)t. (2.25)

After integrating both sides from 0 to t and re-arranging, we obtain:

pn(t) = e−λ(n)t

[
λ(n− 1)

∫ t

0

pn−1(x)eλ(n)xdx + K

]
, (2.26)

where K is a constant determined by the initial condition pn(0) = K.

2.3-9. Pure death process. When λ(n) = 0 and µ(n) = µ for all n ≥ 0, the
differential-difference equations of the B-D process become:

p′N0
(t) = −µpN0(t), (2.27)

p′n(t) = −µpn(t) + µpn+1(t), n = 1, · · · , N0 − 1 (2.28)
p′0(t) = µp1(t). (2.29)

Solving (2.27), we obtain

pN0(t) = e−µt. (2.30)

Copyright c©2009 by H. Kobayashi and B.L. Mark.
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Chapter 2 Basic Queueing Models 9

Similar to the approach in Problem 4.7, we can obtain from (2.28) and (2.29),
the following result:

pn(t) = µe−µt

∫ t

0

eµxpn+1(x)dx, n = 1, · · · , N0 − 1. (2.31)

Applying (2.31) successively for n = 1, 2, · · · , N0 − 1, we obtain:

pn(t) =
(µt)N0−n

(N0 − n)!
e−µt, n = 1, · · ·N0.

For each t we have:

p0(t) +
N0∑

n=1

pn(t) = 1.

Thus, we find that

p0(t) = 1−
N0∑

n=1

(µt)N0−n

(N0 − n)!
e−µt = 1−

N0−1∑
n=0

(µt)n

n!
e−µt.

2.3-10 The time-dependent PGF. Multiply both sides of (2.21) and (2.22) by zn

and sum from n = 0 to ∞ to obtain:
∞∑

n=0

p′n(t)zn = −λ

∞∑
n=0

pn(t)zn + λ

∞∑
n=1

pn−1(t)zn, (2.32)

which is equivalent to

∂

∂t
G(z, t) = −λG(z, t) + λzG(z, t) (2.33)

= −λ(1− z)G(z, t). (2.34)

Equation (2.34) is a simple, separable first order differential equation whose
solution is:

G(z, t) = e−λ(1−z)t =
∞∑

n=0

e−λt (λt)n

n!
zn. (2.35)

Hence,

pn(t) = e−λt (λt)n

n!
.

2.3-11. Time-dependent solution for a certain BD process. When λn = λ and
µn = nµ for all n, equations (2.3-46) become

p′n(t) = −(λ + nµ)pn(t) + λpn−1(t) + (n + 1)µpn+1(t), n = 1, 2, 3, · · · ,
(2.36)

p′0(t) = −λp0(t) + µp1(t). (2.37)

Copyright c©2009 by H. Kobayashi and B.L. Mark.
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10 Chapter 2 Basic Queueing Models

Multiply both sides of (2.36) by zn, sum from n = 1 to ∞ and then add (2.37)
to obtain

∞∑
n=0

p′n(t)zn = −λ

∞∑
n=0

pn(t)zn − µz

∞∑
n=0

npn(t)zn−1

+ λz

∞∑
n=0

pn(t)zn + µ

∞∑
n=0

npn(t)zn−1. (2.38)

Noting that

∂

∂t
G(z, t) =

∞∑
n=0

p′n(t)zn and
∂

∂z
G(z, t) =

∞∑
n=0

npn(t)zn−1,

we can rewrite (2.38) as

∂

∂t
G(z, t) = (z − 1)

[
λG(z, t) + µ

∂

∂z
G(z, t)

]
. (2.39)

One can easily verify by direct substitution that

G(z, t) = exp
{

λ

µ
(1− e−µt)(z − 1)

}
. (2.40)

is the unique solution to (2.39).

Since pn(t) is the coefficient of zn in the power series expansion of G(z, t), we
have

pn(t) =
1
n!

∂n

∂zn
G(z, t) |z=0 . (2.41)

From (2.40), we obtain that

∂

∂z
G(z, t) =

λ

µ
(1− e−µt)G(z, t),

which implies that

∂n

∂zn
G(z, t) =

[
λ

µ
(1− e−µt)

]n

G(z, t). (2.42)

From (2.40), (2.41), and (2.42), we obtain

pn(t) =

[
λ
µ (1− e−µt)

]n

n!
G(z, t)|z=0 =

[
λ
µ (1− e−µt)

]n

n!
exp

{−λ

µ
(1− e−µt)

}
.

2.4 BIRTH-AND-DEATH QUEUEING MODELS

2.4-1. Splitting a Poisson stream.

Copyright c©2009 by H. Kobayashi and B.L. Mark.
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Chapter 2 Basic Queueing Models 11

(a) As shown in Section 2.3, the k-th substream is a Poisson process with
rate pkλ, k = 1, 2, . . . ,K, and the K Poisson streams are statistically
independent.

(b) The interarrival time T of each substream is K-stage Erlangian dis-
tributed with mean K/λ.

FT (t) = 1− e−λt
K−1∑

j=0

(λt)j

j!
, t ≥ 0.

2.4-2. Erlangian distribution.

(a) The LT of an exponential random variable with mean µ is given by

f∗(s) =
µ

s + µ
.

Therefore, the LT of Yi is

f∗Y (s) =
nλ

s + nλ
.

Since X = Y1 + · · ·+ Yn,

f∗X(s) = [f∗Y (s)]n =
(

nλ

s + nλ

)n

. (2.43)

(b) The pdf of X can be obtained by inverting the LT given in (2.43). Using
properties of the LT we have

fX(x) = (nλ)nL−1

[
1

(s + nλ)n

]
= (nλ)ne−λnxL−1

[
1
sn

]

= (nλ)ne−λnx · xn−1

(n− 1)!
=

(nλx)n

x(n− 1)!
e−λnx.

(c) The mean of X is

E[X] = nE[Yi] = n
1

nλ
=

1
λ

.

The variance of X is

Var[X] = nVar[Yi] = n
1

(nλ)2
=

1
nλ2

.

2.4-3. Erlangian distribution (continued). The service completions of cus-
tomers 1 through n may be considered as arrivals of a Poisson process, since
the service times are exponentially distributed and i.i.d. The event that the

Copyright c©2009 by H. Kobayashi and B.L. Mark.
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12 Chapter 2 Basic Queueing Models

total time to serve n customers, W , exceeds some value x is equivalent to the
event that there are n− 1 or fewer arrivals in the interval [0, x], i.e.,

P [W > x|n] = P [n− 1 or fewer arrivals in [0, x)] =
n−1∑

j=0

(µx)j

j!
e−µx.

Hence,

FW (x|n) = P [W ≤ x|n] = 1−
n−1∑

j=0

(µx)j

j!
e−µx.

2.4-4. Balance equation of M/M/1.

(a) The detailed balance equation for the M/M/1 queue equates the prob-
ability flow rate from state n − 1 to state n with that from state n to
state n− 1. The flow rates must be equal if the queue reaches a stable
equilibrium. Therefore, the balance equations are given by

µpn = λpn−1, n = 1, 2, · · · , (2.44)

or equivalently,

pn = ρpn−1, n = 1, 2, · · · , (2.45)

where ρ = λ/µ.
(b) Multiply both sides of (2.45) by zn and sum from n = 1 to ∞ to obtain

∞∑
n=1

pnzn = ρ

∞∑
n=1

pn−1z
n. (2.46)

Simplifying the above equation, we have

G(z)− p0 = ρzG(z). (2.47)

Solving for G(z), we have

G(z) =
p0

1− ρz
.

Using the fact that G(z) = 1, we find that p0 = 1− ρ. Hence,

G(z) =
1− ρ

1− ρz
.

(c) Expanding G(z) as a power series, we find that

G(z) =
∞∑

n=0

(1− ρ)ρnzn.

Hence, we see that pn = (1− ρ)ρn for n = 0, 1, · · · .

Copyright c©2009 by H. Kobayashi and B.L. Mark.



i

i
“VolumeB˙soln”
2009/6/15
page 13

i

i

i

i

i

i

Chapter 2 Basic Queueing Models 13

2.4-5. PASTA and related properties in the M/M/1 queue.

(a) Due to the uniformity property of the Poisson process, the proportion
of arriving calls in the interval (0, T ) that find n in the system can be
expressed as the following ratio:

an =
expected number of arrivals in (0, T ) that find n in the system

expected number of arriving calls in (0, T )
.

The expected number of calls during (0, T ) that find exactly n calls in
the system is λpnT . Thus,

an =
λpnT∑∞
i=0 λpiT

=
λpnT

λT
= pn

(b) From Problem (2.2-1), we know that an = dn holds for any work-
conserving queueing discipline. Hence, in this case pn = dn, i.e., the
probability distribution of the number of system seen by departing cus-
tomers is {pn}.

(c) If the arrival process is state-dependent, i.e., the arrival rate λ(n) de-
pends on the state of the system, then

an =
λ(n)pnT∑∞
i=0 λ(i)piT

=
λ(n)pn∑∞
i=0 λ(i)pi

,

which does not equal pn in general.

2.4-6. Derivation of the waiting time distribution. From (2.4-25) we have

FW (x) = 1− ρ + (1− ρ)
∞∑

n=1

ρn − (1− ρ)e−µx
∞∑

n=1

n−1∑

j=0

ρn (µx)j

j!

= 1− (1− ρ)e−µx
∞∑

j=0

∞∑

n=j+1

ρn (µx)j

j!

= 1− (1− ρ)e−µx
∞∑

j=0

ρj+1

1− ρ

(µx)j

j!
= 1− ρe−µx

∞∑

j=0

(ρµx)j

j!

= 1− ρe−µ(1−ρ)x.

2.4-7. Laplace transform method. The waiting time experienced by a call that
arrives with n ≥ 1 calls ahead of it in the system is given by:

W = R1 + S2 + · · ·+ Sn, (2.48)

where R1, S2, · · · , Sn are i.i.d. according to an exponential distribution of
parameter µ. If there are 0 calls ahead of the arriving call, its waiting time will
be 0. That is, the conditional pdf of W given N = 0 is given by fW (t|0) = δ(t),

Copyright c©2009 by H. Kobayashi and B.L. Mark.


	0131443216_ISM

