


Physical Chemistry: Thermodynamics, Statistical Mechanics,
and Kinetics

Objectives Review Questions

Chapter 1

1.1 By the first law of thermodynamics, ΔE = q+w. If ΔE = 0, therefore, then q = −w: q = −743 kJ.

1.2 We’re taking the square root of the average momentum. The Maxwell-Boltzmann distribution

Pv(v) gives the probability of the molecules having any given speed v, and since m is a constant, this

also gives us the probability distribution of the momentum p = mv. To calculate the mean value of p,

we integrate Pv(v) p over all possible values of v, from zero to infinity. And finally, remember to take

the square root to get the rms:
[∫∞

0
Pv(v)(mv)2 dv

]1/2
, with Pv(v) given by Eq. 1.27.

Chapter 2

2.1 If Ω = 7776 The number of ways of arranging 5 distinguishable particles in 6 slots is 65 = 7776,

and this is our ensemble size for the system described. For that value of Ω, the Boltzmann entropy is

given by

SBoltzmann = kB ln Ω = (1.381 · 10−23 J K−1) ln(7776) = 1.30 · 10−22 J K1.

For the Gibbs energy, we set the probability P(i) for each of the 5 molecules equal to 1/6 (because

there are six states and each state is equally likely). We set N = 5 and get:

S = −NkB
k∑

i=1

P(i) lnP(i) Eq. 2.16

= −5kB(6)
1

6
ln

1

6
k = 6, N = 5

= 1.24 · 10−22 J K−1.

The expression has a factor of 5 from N = 5 and a factor of of 6 because we add the term P(i) lnP(i)

k = 6 times. For a system that is this rigidly defined, the Gibbs and Boltzmann entropies are the same.

2.2 We evaluate the sum in Eq. 2.33 over the lowest values of ε (which here means the lowest values of

the quantum number n), until additional terms do not contribute significantly:

q(T ) =

∞∑
ε=0

g(ε)e−ε/(kBT )

=
∞∑
n=0

(3n+ 1) e−(100K)kBn2/[kB(298K)]

= (1)e0 + (4)e−0.336 + (7)e−1.34 + (10)e−3.02 + (13)e−5.37 + (16)e−8.39 + . . .

= 1.000 + 2.860 + 1.829 + 0.488 + 0.061 + 0.004 + 0.0001 + . . . = 6.24.

2.3 For a nondegenerate energy level, g = 1. Using the canonical distribution, Eq. 2.32, we find

P(ε) =
g(ε)e−ε/(kBT )

q(T )

=
(1) exp

{−(2.2 · 10−22 J)/
[
(1.381 · 10−23 J K−1)(373 K)

]}
1205

= 0.00080.
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Chapter 3

3.1 If we assume that the equipartition principle is valid for these degrees of freedom, then each O2

molecule has Nep = 3 for translation, Nep = 2 for rotation (because O2 is linear), and Nep = 1 × 2

for vibration (1 vibrational mode with kinetic and potential energy terms). For each mole of O2, the

equipartition principle predicts that the contribution to the energy will be NepRT/2, so we multiply

these values by 3.50 mol to obtain the energy contribution to our system:

E = Etrans + Erot + Evib

=
nRT

2
(3 + 2 + 2) =

(3.50 mol)(8.3145 J K−1 mol−1)(355 K)

2
(3 + 2 + 2)

These contributions come to: trans: 15.5 kJ; rot: 10.3 kJ; vib: 10.3 kJ.

3.2 We need to solve for P(v = 1), where v here is the vibrational quantum number, based on the

vibrational constant (which with v will give us the energy) and the temperature (which with ωe will

give us the partition function). We combine the vibrational partition function (Eq. 3.26)

qvib(T ) =
1

1 − e−ωe/(kBT )
=

1

1 − e−(1)(891 cm−1)/[(0.6950 cm−1/K)(428K)]
= 1.05

with the vibrational energy expression Evib = vωe in the canonical probability distribution given by

Eq. 2.32:

P(v) =
g(v)e−Evib/(kBT )

qvib(T )

=
(1)e−(1)(891 cm−1)/[(0.6950 cm−1/K)(428K)]

1.05

= 0.0475.

Note that the vibration of a diatomic is a nondegenerate mode, so we can always set g = 1 for the

vibration of a diatomic.

A couple of quick checks are available here. First, we notice that ωe is more than twice the thermal

energy kBT (as a very rough guide, the thermal energy in cm−1 is about 1.5 times the temperature in

K). That means that we expect most of the molecules to be in the ground state, because few will have

enough energy to get across the gap between v = 0 and v = 1. Sure enough, qvib = 1.05 is very close

to one, meaning that only one quantum state (the ground state) is highly populated. Secondly, the

partition function is only about 5% bigger than 1.0, which suggests that about 5% of the population is

in excited states. Since the closest excited state is v = 1, it makes sense that the probability of being

in v = 1 turns out to be 0.0475, which is just about 5%.

3.3 Asking for the fraction of molecules, the population in a given quantum state, the number of

molecules or moles (out of some total in the system) at a particular energy—all of these are ways of

asking us to find the probability of an individual state or an energy level using the canonical distribution

Eq. 2.32. To do this, we will always need three things: the degeneracy of the energy level (unless we

are looking for a particular state among several that share the same energy), the energy expression, and

the partition function. For rotations of any linear molecule (which includes all diatomic molecules), the

expressions we need are these:

grot = 2J + 1 Erot = BeJ(J + 1) qrot =
kBT

B
.
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We can quickly verify that the integral approximation for the partition function is valid, because Be �
kBT = (0.6950 cm−1/K)(428 K) = 297 cm−1. Then we put all this into Eq. 2.32 to get the probability:

P(J = 4) =
g(J)e−Erot/(kBT )

qrot(T )

=
(2J + 1)e−BeJ(J+1)/(kBT )

kBT/Be

=
(9)e−20(20.956 cm−1)/(297 cm−1)

(297 cm−1)/(20.956 cm−1)
= 0.155.

In this problem, we expect that the molecules are spread out over a large number of quantum states,

because the rotational constant Be is small compared to the thermal energy kBT . A fraction of 15.5%

for the J = 4 energy level is as high as it is only because Erot = 20Be = 419 cm−1 is fairly close to the

thermal energy of 297 cm−1, meaning that there is a high probability of molecules colliding with enough

energy to get to this energy level. The fact that the degeneracy increases with J also helps, because it

means that a collision that lands in any of the g = 2J + 1 = 9 quantum states that correspond to the

J = 4 energy level contribute to this probability.

3.4 The average of the momentum vector �p = m�v should be zero for physical reasons, because every

particle has an equal probability of traveling in either direction along any Cartesian axis (unless we

add forces of some type that push or pull the molecules along a particular direction). To show that

this average is zero mathematically, we would use the classical integrated average, which is obtained

by integrating over all space the property times its probability distribution, which in this case is the

velocity vector distribution Pv3(�v) given by Eq. 1.15. For each vector component of the momentum,

we would need to solve an integral of the form (shown here just for the X component)

〈pX〉 = m

∫ ∞

−∞

(a
π

)1/2
e−a(v2

X)vX dvX .

But this integral is always zero because the Gaussian function e−a(v2
X ) is symmetric about zero whereas

vX is antisymmetric. For every value of vX from −∞ to +∞, the integrand is equal and opposite to

the value of the integrand at the point −vX . The integral sums all these values together and gets zero.

Chapter 4

4.1 The goal is to obtain a mean value of a property of our system, so we can use the integrated average,

which in general has the form

〈f(x)〉 =

∫
all space

Px(x) f(x) dx,

but for this we need the probability distribution function Px(x). What do we need before we can find

the probability? We need the partition function q(T ). Therefore, the sequence of steps we would need

is something like this:

1. Integrate
∫∞
0
e−mgZdZ to get the partition function qZ

′(T ). (I’m using q′ here instead of q because

this is not a true unitless partition function, similar instead to the q′ that was introduced in Eq.

3.7. As long as we integrate over Z with volume element dZ below, the units will cancel.)

2. Combine this with the canonical distribution to formulate an expression for PZ(Z):

PZ(Z) =
e−mgZ(kBT )

qZ ′(T )
.
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3. And finally we would integrate
∫∞
0

PZ(Z)Z dZ to get the mean value of Z.

4.2 The van der Waals equation (Eq. 4.47) reads(
P +

a

V 2
m

)
(Vm − b) = RT.

If we know the pressure P , the molar volume Vm, and the values of the van der Waals coefficients

a = 5.57 L2 bar mol−2 and b = 0.06499 Lmol−1, then we can solve for T :

T =
1

R

(
P +

a

V 2
m

)
(Vm − b)

=
1

0.083145 bar L K−1mol−1

[
(24.0 bar) +

(5.57 L2 bar mol−2)

(1.00 L mol−1)2

] [
(1.00 − 0.06499) L mol−1

]
= 333 K.

For the ideal gas, the temperature would be

T =
PVm
R

= 289 K,

so a pressure of 24.0 bar is high enough that we see significant deviation from ideality.

4.3 The goal here is to use the Lennard–Jones parameters to approximate the potential energy curve

u(R) for the interaction between ethane molecules using Eq. 4.11, and then to use this potential

function in the approximate expression from Eq. 4.59 for the pair correlation function. Combining

these equations and obtaining the parameters from the table, we have:

G(R) ≈ exp

{
−ε

[(
Re

R

)12

− 2

(
Re

R

)6
]
/(kBT )

}
,

where ε/kB = 230 K and Re = 4.42 Å.

4.4 We are looking for individual particles where all the spins sum to an integer. Atomic hydrogen,

like several of the other group 1 elements, has an odd mass number (so its nucleus is a fermion) and an

odd electron number (so the electron spins sum to a half-integer). That means that the combination of

nucleus and electron(s) forms an integer spin particle—a boson, and in principle, a BEC can be formed

from 1H. Like the alkali metals, 1H has the advantage that its unpaired electron allows it to be steered

in a magnetic field and magnetically cooled, but its relatively low mass and its tendency to form strong

chemical bonds make it much more challenging to form H atom BECs, but researchers accomplished

this in 1998 [1]. Neon has an integer spin nucleus and an even number of electrons, so is a boson also.

Because it is not paramagnetic, however, it cannot be confined by a magnetic trap, and so experimental

methods do not yet exist that allow us to form a BEC from neon. And 19F−, which has an odd number

of nucleons (with a total nuclear spin of 1/2) and an even number of electrons, is a fermion, and cannot

be used to form a BEC. So the candidates are only a and c, with some significant hurdles to overcome

before we see a Ne BEC formed in the lab.

Chapter 5

5.1 Equation 5.13,

λ =
〈v〉
γ

=
1√
2ρσ

,
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tells us that the mean free path depends on the number density ρ (which we can calculate if we know

P and T ) and the collision cross section σ:

ρ =
NAP

RT
=

(6.022 · 1023 mol−1)(0.23 · 105 Pa)

(8.3145 J K−1 mol−1)(220 K)
= 7.57 · 1024 m−3

λ =
1√

2(7.57 · 1024 m−3)(121 · 10−20 m2)
= 7.7 · 10−8 m.

5.2 For a gas, we can predict the diffusion constant from Eq. 5.34. Let A be N2 and B be acetylene

(HCCH):

DB:A =
〈vAB〉

2ρAσAB

〈vAB〉 =

√
8kBT

πμ

μ =
(26.04)(28.01)

26.0 + 28.0
amu = 13.49 amu

〈vAB〉 =

√
16(1.381 · 10−23 J K−1)(298 K)

π(28.0 amu)(1.661 · 10−27 kg amu−1)
= 683.8 m s−1

ρA =
NAP

RT
=

(6.022 · 1023 mol−1)(1.0 · 105 Pa)

(8.3145 J K−1 mol−1)(298 K)
= 2.431 · 1025 m−3

σAB =
1

4
(σA + 2

√
σAσB + σB)

=
1

4

(
37 + 2

√
37 · 72 + 72

)
Å

2
= 53.06 Å

2

D =
(683.8 m s−1)

2(2.431 · 1025 m−3)(53.06 · 10−20 m2)
= 2.651 · 10−5 m2 s−1 = 0.265 cm2 s−1.

Then we can use the Einstein equation (Eq. 5.36) rrms =
√

6Dt to estimate the time required.

t ≈ r2rms

6D
=

(100 cm)2

6(0.265 cm2 s−1)
= 6.3 · 103 s = 1.7 hr.

5.3 This problem is asking about the relationship between a flux and the change in concentration from

one place to another (i.e., a concentration gradient). That relationship is the subject of Fick’s first law,

so we employ Eq. 5.42:

DΔρ/ΔZ =
(1.0 · 10−15 m2 s−1)(1.0 · 10−1 mol m−3)

(1.0 · 10−8 m)

= 1.0 · 10−8 mol s−1 m−2.

Chapter 6

6.1 No matter how we heat the water, the heat must be carried from one part of the bath to the

reaction container, which will require convection, and then transferred from the water in contact

with the container into the reaction mix by conduction. At a temperature of 373 K, we don’t expect

blackbody radiation to be as efficient a means of conveying heat.

6.2 Problem 6.5 gives a detailed and precise way to approach this problem (but for a different temper-

ature), so let’s use a quicker and dirtier method here. If we examine Fig. 6.2, we see that the peaks of
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the three curves shown are at roughly log10 ν( s−1) equal to 12.8 for T = 100 K, 13.8 for T = 1000 K,

and 14.8 for T = 104 K. This suggests that the peak power occurs at a frequency such that

log10 νmax( s−1) ≈ 10.8 + log10 T ( K).

From this, we can find an equation for νmax, and then use the speed of light to solve for λmax:

νmax( s−1) ≈ 1010.8T ( K) = 6.3 · 1010T ( K)

λmax =
c

νmax
≈ 2.998 · 108 m s−1

6.3 · 1010T ( K)

=
0.0048

T ( K)
= 1.3 · 10−5 m.

This is equal to 13μm. Carrying out the work as in Problem 6.5 yields the precise result 13.7μm.

6.3 We use the Beer–Lambert law:

A = − log10

(
Il
I0

)
= ε C l

and solve for ε:

ε =
A

Cl
=

(0.85)

(3.0 · 10−6M)(1.0 cm)
= 2.8 · 105M−1 cm−1.

Although these units for ε are not SI, they are probably as close as we have to a standard unit for this

type of measurement, simply because concentrations in solution are normally reported in molarities and

pathlengths in cm.

6.4 The equations we have for these two linewidths are (Eqs. 6.57 and 6.59)

δνDoppler =
4ν0
c

√
2kBT ln 2

m

δνcollision = 4γ.

For the Doppler width, we can plug in the molecular mass of 28.0 amu and the temperature, obtaining

δνDoppler =
4(2150 cm−1)

2.998 · 108 m s−1

√
2(1.381 · 10−23 J K−1)(298 K) ln 2

(28.0 amu)(1.661 · 10−27 kg amu−1)
= 0.010 cm−1.

For the collision-broadened linewidth, we will have to know the collision frequency, which we obtain

from the average speed, density, and collisions cross section:

δνcollision = 4ρσ 〈vAA〉 = 4

(NAP

RT

)
σ

√
16kBT

πm

= 4

(
(6.022 · 1023 mol−1)(1.0 · 105 Pa)

(8.3145 J K−1 mol−1)(298 K)

)
(40 · 10−20 m2)

√
16(1.381 · 10−23 J K−1)(298 K)

(28.0 amu)(1.661 · 10−27 kg amu−1)

= 0.87 cm−1.

At this wavelength, gas-phase spectra taken at atmospheric pressure are strongly collision-broadened.

Partly for this reason, most gas-phase spectroscopy experiments are carried out under vacuum.

Chapter 7
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7.1 For this problem, we can work from both ends to meet in the middle. We rewrite κT and α in

terms of the partial derivatives:

κT = − 1

V

(
∂V

∂P

)
T,n

α =
1

V

(
∂T

∂V

)
P,n

.

This lets us know that we need to convert the partial derivative of V that we’re starting with to two

derivatives involving V . The chain rule in Table A.4 lets us break up the original partial derivative and

also introduce the pressure as one of the variables:(
∂V

∂S

)
T,n

=

(
∂V

∂P

)
T,n

(
∂P

∂S

)
T,n

.

At some point in the process, the entropy S ceases to be a variable in the expression. That’s the clue

that we need a Maxwell relation to change variables, and Eq. 7.30 does exactly what we need, taking a

partial of S with T held constant and delivering a partial of V with P held constant. Combining these

strategies gives the solution:(
∂V

∂S

)
T,n

=

(
∂V

∂P

)
T,n

(
∂P

∂S

)
T,n

chain rule

= −
(
∂V

∂P

)
T,n

(
∂T

∂V

)
P,n

by Eq. 7.30

=
κT
α
. by Eqs. 7.31 and 7.32

7.2 At such high temperature, we expect all the vibrational degrees of freedom in the molecule (as well

as the translations and rotations) to contribute to the heat capacity. The molecule is nonlinear and has

11 atoms, so the number of equipartition degrees of freedom is

Nep = 3 trans + 3 rot + (3Natom − 6) × 2 vib = 60.

According to the equipartition principle, the molar heat capacity at constant volume CV m is then

CV m =

(
∂E

∂T

)
V

=
1

2
NepR = 30R.

The value of CPm is greater than this by R, so we predict

CPm = 31R = 258 J K−1 mol−1.

This is the same as the experimentally measured value.

7.3 The energy for heating at constant pressure is the integral of the heat capacity over the temperature

range, but for small temperature changes we often assume that the heat capacity is constant:

ΔE =

∫ T2

T1

CP dT ≈ nCPm

∫ T2

T1

dT

= nCPm(T2 − T1) = (1.00 mol)(0.71 J K−1 mol−1)(10.0 K) = 7.1 J.

Chapter 8

8.1 Here we can use the equation for the reversible expansion (Eq. 8.2)

wT,rev = −nRT ln

(
V2
V1

)
.
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The only difference is that V2 < V1 for the compression, so the sign of the work is reversed:

wT,rev = −(0.100 mol)(8.3145 J K−1 mol−1)(298 K) ln

(
1.00

2.00

)
= 172 J.

The value is positive instead of negative in a compression, because work is done to the system, and the

system absorbs energy (which may later be released by allowing the system to expand).

8.2 Equation 8.24 relates the Joule–Thomson coefficient to the van der Waals coefficients and the heat

capacity: (
∂T

∂P

)
H

=
2a
RT − b

CPm
.

From Table 4.2 we learn that for neon a = 0.208 L2 bar mol−2 and b = 0.01672 Lmol−1, and from the

Appendix we find CPm = 20.786 J K−1 mol−1. Substituting these values in we predict(
∂T

∂P

)
H

=
2a
RT − b

CPm

=

{
2(0.208 L2 bar mol−2)/

[
(0.083145 bar L K−1mol−1)(100 K)

]}− (0.01672 Lmol−1)

20.786 J K−1 mol−1

= 0.00160 LK J−1 = 0.160 K bar−1.

8.3 The efficiency of the Carnot engine is given by Eq. 8.37:

ε =
Thot − Tcold

Thot
.

We need to solve for Thot, which is a matter of reorganizing the equation:

Thotε = Thot − Tcold

Tcold = Thot − Thotε

Tcold
1 − ε

= Thot =
298 K

1 − 0.30
= 430 K.

Chapter 9

9.1 The heat capacity of air is roughly the heat capacity of nitrogen or oxygen gas, which covers a

narrow range from 29.088 J K−1 mol−1 for N2 to 29.355 J K−1 mol−1 for O2. A good estimate is about

29.1 J K−1 mol−1, because air is mostly N2. To calculate the change in entropy, we integrate dS over

the temperature range at constant pressure and use the heat capacity to rewrite dS in terms of dT :

ΔS =

∫ T2

T1

dS =

∫ T2

T1

TdS

T

=

∫ T2

T1

1

T

(
T∂S

∂T

)
P,n

dT

=

∫ T2

T1

1

T
CP dT ≈ CP

∫ T2

T1

dT

T

= nCPm ln
T2
T1
.

Next, we use the ideal gas law to find the number of moles of the air at the initial temperature of

298 K (Keep in mind that we must use kelvin for temperatures in any equation where T is multiplied

or divided):

n =
PV

RT
=

(1.00 · 105 Pa)(100.m3)

(8.3145 J K−1 mol−1)(297 K)
= 4.05 · 103 mol,
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and we plug this in to find ΔS, using an initial temperature of 298 K and final temperature of 296 K:

ΔS = (4.05 · 103 mol)(29.1 J K−1 mol−1) ln
296

298
= −792 J K−1.

9.2 Although this may appear to be a simple exercise in plugging numbers into an equation, we find

that it takes some care to arrive at a set of values where the units are all consistent. We begin with Eq.

9.11:

Sm = R

{
5

2
+ ln

[(
2πmkBT

h2

)3/2
RT

NAP

]}
.

Let’s work on some of the parts separately:(
2πmkBT

h2

)
=

2π(222 amu)(1.661 · 10−27 kg amu−1)(1.381 · 10−23 J K−1)(298 K)

(6.626 · 10−34 J s)2

= 2.17 · 1022 m−2

RT

NAP
=

(8.3145 J K−1 mol−1)(298 K)

(6.022 · 1023 mol−1)(1.00 · 105 Pa)
= 4.11 · 10−26 m3.

Combining these, we have

Sm = R

{
5

2
+ ln

[
(2.17 · 1022 m−2)3/2 (4.11 · 10−26 m3)

]}
= 21.2R = 176 J K−1 mol−1.

This is the same as the experimental value to three significant digits.

Chapter 10

10.1 The molar mass of CCl4 is 153.8 g/mol, so we have n = 0.683 mol. We break the process into two

steps: the condensation (which takes place at CCl4’s normal boiling point of 349.9 K) and the cooling.

For the condensation, the change in enthalpy and entropy are calculated from the latent enthalpy of

vaporization ΔvapH
−◦ , keeping in mind that the direction of the process indicates that ΔH and ΔS will

both be negative:

ΔH1 = −nΔvapH
−◦ = −(0.683 mol)(29.82 kJ mol−1) = −20.4 kJ

ΔS1 = −nΔvapH
−◦

Tb
= −(0.683 mol)

(29.82 · 103 J mol−1

349.9 K
= −58.2 JK−1.

For the cooling step, we will need the heat capacity:

ΔH2 = nCPm(T2 − T1) = (0.683 mol)(131.75 J K−1 mol−1)(−27 K) = −2.43 kJ

ΔS2 = nCPm

∫ T2

T1

dT

T
= nCPm ln

T2
T1

= (0.683 mol)(131.75 J K−1 mol−1) ln
323

349.9
= −7.20 J K−1.

Combining these expressions, we get the following:

ΔH = ΔH1 + ΔH2 = −22.8 kJ

ΔS = ΔS1 + ΔS2 = −65.4 JK−1.

10.2 Finding boiling temperatures and pressures under non-standard conditions is generally a job for

the Clausius–Clapeyron equation, Eq. 10.37. In this case, because the pressure has been raised, we
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expect to see the boiling temperature increase. Substituting in P = 1.10 bar and ΔvapH
−◦ for CCl4, we

find out how much the temperature shifts:

lnP (bar) =
ΔvapH

−◦

R

(
1

T−◦
b

− 1

T

)
R lnP (bar)

ΔvapH−◦ =
1

T−◦
b

− 1

T

1

T
=

1

T−◦
b

− R lnP (bar)

ΔvapH−◦

=
1

349.9 K
− (8.3145 J K−1 mol−1) ln(1.10)

29.82 · 103 J mol−1 = 0.002831 K−1

T = (0.002831 K−1)−1 = 353 K.

10.3 Examining the phase diagram, we see that the solid-liquid phase boundary crosses P = 1.00 bar

at Tf ≈ 390 K. Similarly, the liquid-gas phase boundary at P = 1.00 bar has a temperature of roughly

Tb ≈ 700 K.

Chapter 11

11.1 We find the activity using Eq. 11.50, where in this case we get one SO2−
4 and two K+ ions for

each dissociation of one K2SO4:

aAυ+
Bυ− (aq) =

(
γ±XAυ+

Bυ−

)υ++υ−
= 2 ln γK+XK+ + ln γSO2−

4
XSO2−

4
.

Combining this with Eq. 11.19 gives the following expression for the chemical potential:

μ = μ−◦ + 2RT ln γK+XK+ +RT ln γSO2−
4
XSO2−

4
.

11.2 Table 11.1 tells us that the Henry’s law coefficient for CCl4 in water is 1600 bar. To use that

value, we need the mole fraction, which we can calculate by dividing the moles per liter CCl4 into the

molarity of 55.6M for the much more abundant water:

XCCl4 =
0.00100 molL−1

55.6 mol L−1 = 1.80 · 10−5

PCCl4 ≈ kXXCCl4 = (1600 bar)(1.80 · 10−5) = 0.029 bar.

We use Raoult’s law for the water, but since the mole fraction of the water is 1 −XCCl4 = 1.000 to 4

significant digits, the tiny concentration of CCl4 does not shift the vapor pressure of water significantly

from its value over the pure solvent: PH2O ≈ 0.032 bar.

11.3 We read the red curve for the values of the mole fractions in the gas, and the blue curve for the

mole fractions in the liquid: gas: 20% chloroform, 80% acetone; liquid: 30% chloroform, 70% acetone.

11.4 The mole fraction of K2SO4 ions in solution we estimate by taking the mole fraction of the salt,

0.50M/(55.6M + 0.50M) = 0.00892, and multiplying by 3 because each K2SO4 dissociates into three

ions. The mole fraction of ions is all we then need to use Eq. 11.65 and predict the shift in freezing

point:

ΔTf ≈ −RT
•2
f XB

ΔfusH•
A

= − (8.3145 J K−1 mol−1)(273.15 K)2(3)(0.00892)

6008 Jmol−1 = −2.76 K.

We add this shift to the standard freezing point Tf = 273.15 K and find the new freezing point is

270.4 K.
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Chapter 12

12.1 We estimate this value by counting the contours we have to cross to go from the products in the

flat area near the lower right-hand corner (at roughly H-F≈ 0.9 Å, H-H> 2.0 Å) to the transition state

between reactants and products, (at roughly H-F≈ 1.6 Å, H-H≈ 0.8 Å). We have to cross 5 contours,

each representing an increase of 30 kJ mol−1, for an activation energy of approximately 150 kJ mol−1.

12.2 To calculate the enthalpy of an isothermal reaction at a temperature other than 298 K, we first

find ΔrxnH
−◦ at 298 K using Hess’ law. In this case, the enthalpies of formation of N2 and O2 gas are

both zero, so

ΔrxnH
−◦ (298 K) = −2ΔfH(NO2) = −66.36 kJ.

To correct for the change in temperature we add the term ΔrxnCP ΔT that appears in Eq. 12.16. For

this reaction, the heat capacity difference is

ΔrxnCP = (29.088 + 2 × 29.35 − 2 × 37.2) J K−1 = 13.40 JK−1.

The enthalpy of reaction is therefore

ΔrxnH
−◦ (373 K) = ΔrxnH

−◦ (298 K) + ΔrxnCPΔT

= −66.36 kJ + (13.40 JK−1)(75 K)(10−3 kJ/ J) = −65.36 kJ.

12.3 We use Eq. 12.21,

T2 = T1 − ΔrxnH(T1)

C̄P (products)
,

but first we need to find the enthalpy of reaction for the combustion of hydrazine:

N2H4(l) + O2(g) −→ N2(g) + 2H2O(l),

ΔrxnH
−◦ = [−2(285.83)− 50.63] kJ = −622.39 kJ,

We also need the combined heat capacity of the products:

CP (products) = [2(75.291) + 29.088] J K−1 = 179.67 JK−1.

So the adiabatic flame temperature is predicted to be about

T = 298.15 K − −622.39 kJ

179.67 JK−1 = 3760K.

We expect this to be an upper limit to the actual flame temperature.

12.4 The standard way to get an equilibrium constant for a given reaction at 298 K is to calculate the

free energy of reaction from free energies of formation, and then set Keq equal to exp [−ΔrxnG
−◦ /(RT )].

However, in this case we need to know the free energy at 373 K instead of 298 K (which is the temperature

at which the ΔfG
−◦ values are measured). Therefore, to account for the temperature-dependence of

−ΔrxnG
−◦ we instead calculate −ΔrxnH

−◦ and −ΔrxnS
−◦ and then set −ΔrxnG

−◦ = ΔrxnG
−◦ −TΔrxnS

−◦ .

Using Hess’ law, we find that the enthalpy of reaction at 298 K is −66.36 kJ. We find the entropy of

reaction the same way, but this time keep in mind that the standard molar entropies of N2 and O2 are

not zero (even though the enthalpies of formation are):

ΔrxnS
−◦ = [191.49 + 2(205.138)− 2(240.06)] J K−1 = 121.65 JK−1.

11 Copyright c© 2014 Pearson Education, Inc.



This lets us estimate ΔrxnG
−◦ at 373 K:

ΔrxnG
−◦ (373 K) = −66.36 kJ − (373 K)(121.646 JK−1)(10−3 kJ/ J) = −111.74 kJ,

which gives us an equilibrium constant of

Keq = exp

[
−ΔrxnG

−◦

RT

]

= exp

[
(−111.73 kJ)

(8.3145 J K−1 mol−1)(373 K)(10−3 kJ/ J)

]
= 4.43 · 1015.

Chapter 13

13.1 For an elementary reaction we can normally assume that the reaction rate is proportional to the

concentration of each reactant, in this case counting the two NO molecules separately so that the rate

is proportional to [NO]2[Cl2]. We also need to scale by the stoichiometric coefficient appropriate to

whichever chemical species we are monitoring:

−d[NO]

2dt
= −d[Cl2]

dt
=
d[NOCl]

2dt
= k[NO]2[Cl2]

13.2 We begin with Eq. 13.16 for the rate constant in simple collision theory,

kSCT = σAB

√
8kBT

πμ
NA p e

−Ea/(RT ),

and solve for Ea:

Ea = −RT ln

[(
kSCT

NApσAB

)√
πμ

8kBT

]
.

We have numerous substitutions to make, here transferring some values into SI units:

R 8.3145 J K−1 mol−1 T 2000 K kSCT 2.92 · 105 m3 mol−1 s−1

p 1.0 σAB 36 · 10−20 m2 μ (32/33)( amu)(1.661 · 10−27 kg amu−1)

Combining these yields Ea = 1.41 · 105 J mol−1 = 141 kJ mol−1.

13.3 This is an application of Eq. 13.41,

t 1
2

= − 1

k
ln 1

2 =
ln 2

k
,

where, for the reaction given,

k = Ae−Ea/(RT ) = (2.5 · 1017 s−1)e−(384·103 Jmol−1)/[(8.3145 JK−1 mol−1)(1100K)] = 0.146 s−1.

The value of this rate constant suggests that the reaction takes place over a period of seconds, and

that’s what we find when we calculate the half-life:

t1/2 =
ln 2

0.146 s−1
= 4.8 s.

Chapter 14
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14.1 The reaction system is

CCl2F2 + hν −→ CF2Cl + Cl

Cl + O3 −→ ClO + O2

ClO + O −→ Cl + O2

Cl + CH4 −→ HCl + CH3.

To write the rate law for [Cl], we identify every elementary reaction in the mechanism that involves

Cl, and we add a term for that reaction to the right side of the rate law. Atomic Cl is involved in all

four reactions in the mechanism, as a reactant in the second and fourth reactions, and as a product in

the first and third. Therefore, we will have four terms on the right-hand side of the rate law, two with

minus signs (for when Cl is a reactant and is consumed) and two without (for when Cl is a product and

the reaction increases the Cl concentration):

d[Cl]

dt
= j1[CCl2F2] − k2[Cl][O3] + k3[ClO][O] − k4[Cl][CH4].

14.2 Equation 14.23 is

[A]′ = [A]0

(
1 − [A]0

[B]0

){
exp

[
([B]0 − [A]0)

(
1 − k−1

k−1 + k2

)
k1t

]
− [A]0

[B]0

}−1

.

To verify that this gives the right result in the limit t → 0, we start setting t = 0 on the right-hand

side:

lim
t→0

[A]′ = [A]0

(
1 − [A]0

[B]0

){
exp

[
([B]0 − [A]0)

(
1 − k−1

k−1 + k2

)
k1(0)

]
− [A]0

[B]0

}−1

= [A]0

(
1 − [A]0

[B]0

){
exp [0] − [A]0

[B]0

}−1

= [A]0

(
1 − [A]0

[B]0

){
1 − [A]0

[B]0

}−1

= [A]0.

This is correct: at t = 0 we should have the initial concentration of A, [A]0.

In general, when setting t = 0 we have to look out for places where the solution becomes undefined

in that limit, but in this case that doesn’t happen. If it did, we would have to employ l’Hôpital’s rule

to try to get the expression to converge. A correct expression of concentration as a function of time

will always be finite.

14.3 If B is in much greater concentration than A initially, then we can impose the pseudo-first-order

approximation on reaction 1, setting

−d[A]

dt
= k1[A][B] ≈ k′1[A],

where k′1 = [B]0k1. This makes the reaction mechanism identical mathematically to our series of

unimolecular reactions used to model sequential reactions, arriving at Eq. 14.16. For our present

system, we replace [C] (the end product) in Eq. 14.16 with [D], and we replace k1 in Eq. 14.16 with

our pseudo-first-order rate constant k′1 = [B]0k1:

[D] ≈ [A]0

(
1 − k2e

−[B0]k1t − [B]0k1e
−k2t

k2 − [B]0k1

)
.
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Notes on Maple commands

Several solutions in this manual have added notes on how to set up expressions under a symbolic

mathematics program to assist in solving the problem. The syntax used is specifically for Maple

(Waterloo Maple, Inc.), but the approach will be similar for other packages such as Mathematica

(Wolfram Research). Please note, however, that for any of these problems, a symbolic math program is

useful only after you have overcome the conceptual challenges of the problem. Where these programs

have their greatest use is when we need to solve simultaneous or transcendental equations, or obtain

numerical values or algebraic expressions for integrals. We still have to know how to set up an integral,

and we have to decide where and how to apply approximations (which turns out to be more important

than one might think). Once we have taken these steps, the program may be able to take over. Even

then, however, the math in the majority of our problems is limited to relatively straightforward algebraic

manipulations (however complex the concepts may be). For these case, the Maple syntax is not shown

because it would be so similar to the written mathematics already appearing in the solution; this is

largely the goal of symbolic math programs in the first place: to accept input in the form that one

would write the problem on paper.

End of Chapter Problems

Chapter A

A.1 This problem uses a common manipulation, one of the features of logarithms that makes them so

useful:

pKa = − log10Ka = − log10 e−ΔG/(RT )

= −
[
−ΔG

RT

]
log10 e log xa = a log x

=
ΔG

RT
(0.434).

This shows, if you don’t mind us getting ahead of ourselves a little, that the pKa is directly proportional

to the free energy of dissociation, ΔG, and inversely proportional to the temperature, T .

A.2 The idea here is that, even if we think at first we have no idea what the number ought to be, a

closer look at the available choices makes it clear that we can spot some potentially ridiculous answers:

a. 2 · 1010 m s−1 is faster than the speed of light.

b. 2 · 105 m s−1 has no obvious objections.

c. 2 m s−1 is the speed of a slow walk, and would imply, for example, that you could send an e-mail

message over a cable connection to a friend half a mile away, and then run the the half-mile to

arrive and deliver the message in person before the e-mail finishes traveling through the wires.

When we have calculations that toss around factors of 10−34, for one example, this is a significant skill.

The correct answer is 2 · 105 m s−1.

A.3 The volume is roughly 125 Å
3
, which we can show is not big enough to hold more than about 15

atoms. Chemical bonds, formed between overlapping atoms, are roughly 1 Å long, and so typical atomic

diameters are roughly 2 Å or more, and occupy a volume on the order of (2 Å)3 = 8 Å
3
. A volume of

125 Å
3
, therefore, cannot hold more than about 125/8 = 15.6 atoms. Among the choices, the only

reasonable value is 8.
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A.4 a. Chemical bond lengths in molecules are always in the range 0.6–4.0 Å, or 0.6 · 10−10 to

4.0 · 10−10 m. 25 · 10−8 m is much too large for a bond length. no

b. Six carbon atoms have a mass of 6 ·12 = 72 amu. With the added mass of a few hydrogen atoms

at 1 amu each, 78 amu is a reasonable value. yes

A.5 a. The derivatives d[A] and dt have the same units as the parameters [A] and t,respectively.

Both sides of the equation should therefore have units of mol L−1 s−1. That means that k needs

to provide the units of s−1 and cancel one factor of concentration units on the righthand side. k

has units of L s−1 mol−1.

b. The argument of the exponential function must be unitless, so kB must cancel units of energy

(J) in the numerator and temperature (K) in the denominator. The correct units are J K−1.

c. The units all cancel, and Keq is unitless.

d. Squaring both sides of the equation, we can solve for k: μω2 = k. k must therefore have units

of kg s−2.

A.6 There are two factors on the lefthand side, (2x+1)2, and e−ax2

. For the product to be zero, at least

one of these factors must be zero. If (2x + 1) = 0, then x = − 1
2 . If e−ax2

= 0, then x→ ± ∞ .

All three are valid solutions.

A.7 In general, for any complex number (a+ ib), the complex conjugate is (a+ b)∗ = a− ib. We look

for the imaginary component and and invert its sign:

a. x− iy : a = x b = −y, x + iy.

b. ix2y2 : a = 0 b = x2y2, −ix2y2 .

c. xy(x+ iy + z) : a = x2y + xyz b = xy2, x2y + xyz − ixy2, xy(x− iy + z).

d. a = x/z b = y/z, (x − iy)/z .

e.

eix = 1 + ix− x2 − ix3 + x4 + ix5 − . . .

a = 1 − x2 + x4 − . . .

b = x− x3 + x5 − . . .

a− ib = 1 − ix− x2 + ix3 + x4 − ix5 − . . . = e−ix.

f. 54.3: a = 54.3 b = 0, 54.3.

A.8 This problem tests a few algebraic operations involving vectors, particularly useful to know when

we look at angular momentum and (often related) magnetic field effects.

a. The length of a vector is calculated using the Pythagorean theorem: |�C| =
√

02 + 22 + 12 =√
5 .

b. We add vectors one coordinate at a time: �A+ �B = (1 + 1, 0 + 0, 0 + 1) = (2, 0, 1).

c. The dot product of two vectors multiplies the values for each coordinate of the two vectors and

sums the results: �A · �B = (1 · 1) + (0 · 0) + (0 · 1) = 1.
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d. In the case of perpendicular vectors, this gives us zero: �A · �C = (1 · 0) + (0 · 2) + (0 · 1) = 0.

e. The cross product involves a little more work, and yields a new vector, perpendicular to the two

original vectors: �A × �B = (0 · 1 − 0 · 0, 0 · 1 − 1 · 1, 1 · 0 − 0 · 1) = (0,−1, 0).

A.9 If we accept that the Taylor series expansion is exact if we take it to infinite order, then the Euler

formula can be proven by the expansions of ex (Eq. A.25), sinx (Eq. A.26), and cosx (Eq. A.27):

eix =
∞∑
n=0

1

n!
(ix)n

= 1 + ix− 1
2x

2 − i

6
x3 +

1

24
x4 +

i

120
x5 − . . .

= (1 − 1
2x

2 +
1

24
x4 − . . .) + i(x− 1

6
x3 +

1

120
x5 − . . .)

= cosx+ i sinx .

This equation is of practical importance to us, and is famous among mathematicians for tying together

three fundamental mathematical values—π, i, and e—in one equation:

eiπ = 1.

A.10 • Maple: After checking that all of the units are indeed consistent, enter the Maple command

solve((1.000-(3.716/Vˆ2))(V-0.0408)/(0.083145298.15),V);

The resulting solution, 24.8, is in the same units as b, namely 24.8 L mol−1.

• Successive approximation: There are several ways to solve this, corresponding to different

forms of the equation that leaves Vm on one side. One way to set up the equation quickly is to

recognize that (Vm− b) will vary rapidly compared to P − (a/V 2
m), so we can isolate Vm as follows:

(
P − a

V 2
m

)
(Vm − b)

RT
= 1(

P − a

V 2
m

)
(Vm − b) = RT

Vm − b =
RT(

P − a
V 2
m

)
Vm =

RT(
P − a

V 2
m

) + b.

Substituting in the values for P , a, b, R, and T (making sure that the units are all compatible),

we can reduce the equation to the following:

Vm(L mol−1) =
24.943

1 + 3.716
V 2
m

+ 0.0408.
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Guessing an initial value of 1 L mol−1 yields the following series of approximations:

Vm =
24.943

1 + 3.716
12

+ 0.0408 = 5.330

Vm =
24.943

1 + 3.716
5.3302

+ 0.0408 = 22.099

Vm =
24.943

1 + 3.716
22.0992

+ 0.0408 = 24.796

Vm =
24.943

1 + 3.716
24.7962

+ 0.0408 = 24.834

Vm =
24.943

1 + 3.716
24.8342

+ 0.0408 = 24.835.

The series has converged to the three significant digits requested. The final value for Vm is

24.8 L mol−1.

A.11 Here we apply the rules of differentiation summarized in Table A.3.

a.

f(x) = (x+ 1)1/2

df

dx
= 1

2 (x+ 1)−1/2.

b.

f(x) = [x/(x+ 1)]1/2

df

dx
= 1

2

(
x

x+ 1

)−1/2 [
1

x+ 1

dx

dx
+ x

d

dx

(
1

x+ 1

)]

= 1
2

(
x

x+ 1

)−1/2 [
1

x+ 1
− x

(x+ 1)2

]
.

c.

df

dx
= exp

[
x1/2

] d

dx

(
x1/2

)
= 1

2x
−1/2 exp

[
x1/2

]
.

d.

df

dx
= exp

[
cos x2

] d

dx
(cos x2)

= exp
[
cos x2

]
(− sin x2)

d

dx
(x2)

= −2x sin x2 exp
[
cos x2

]
.

A.12 This problem tests our ability to use a few of the analytic integration results given in Table A.5.

a.
∫∞
0 e−axdx = − 1

ae
−ax|∞0 = − 1

a (0 − 1) =
1

a
.
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b.
∫ 5

1
x2dx = 1

3x
3|51 = 1

3 (125 − 1) =
124

3
.

c.
∫ 5

1
x−3/2dx = −2x−1/2|51 = −2(

1√
5
− 1).

d. r2
∫ 2π

0
dφ

∫ π

0
sin θdθ = r2 (φ)|2π0 (− cos θ)|π0 = r2(2π − 0)[−(−1) − (−1)] = 4πr2.

A.13 We use the Coulomb force law, Eq. A.41, using the charge of the electron −e for both charges

and r12 set to 1.00 Å:

FCoulomb =
e2

4πε0r2

=
(1.602 · 10−19 C)2

(1.113 · 10−10 C2 J−1 m−1)(1.00 Å)2(10−10 m Å
−1

)2
= 2.31 · 10−8 N .

A.14 This problem relies on the definitions of the linear momentum p and the kinetic energy K (Eq.

A.36):

p = mv

K = 1
2mv

2 = p2

2m
.

A.15 We’re calling the altitude r. Because the acceleration is downward but r increases in the upward

direction, the acceleration is negative: −9.80 m s−2. We invoke the relationship between force and the

potential energy, and find that we have to solve an integral:

U(r) = −
∫ r

0

F (r′) dr′ = −
∫ r

0

(−mg) dr′ = mgr.

A.16

|FCoulomb| =
e2

4πε0r2
=

(1.602 · 10−19 C)2

(1.113 · 10−10 C2 J−1 m−1)(0.529 Å)2(10−10 m Å
−1

)2

= 8.23 · 10−8 N

|Fgravity| = mHg

= (1.008 amu)(1.661 · 10−27 kg amu−1)
(
9.80 m s2

)
= 1.64 · 10−26 N.

Sure enough, the gravitational force is smaller than the Coulomb force by orders of magnitude, and

the motions of these particles will be dictated—as well as we can measure them —exclusively by the

Coulomb force.

A.17 We are proving an equation that depends on L and x and t and vx, which may look like too many

variables. If we use the definition of L to put this equation in terms of K and U , then we can at least
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put K in terms of speed. Then, because speed itself is a function of position and time, the number of

variables is quite manageable. Nonetheless, keeping things in terms of K and U is useful, because of

their straightforward dependence on only v and x, respectively.

To prove the equation, we could try working from both sides and seeing if the results meet in the

middle. First the lefthand side:

∂L

∂x
=
∂K

∂x︸︷︷︸
=0

−∂U
∂x

K not a function of x

= Fx = ma Fx = −dU/dx

= m
d2x

dt2
acceleration = d2x/dt2

Next the righthand side:

d

dt

∂L

∂vx
=

d

dt

[
1

2
m
∂v2x
∂vx

− ∂U

∂vx

]

=
d

dt

⎡
⎢⎢⎣mvx − ∂U

∂vx︸︷︷︸
=0

⎤
⎥⎥⎦ U not a function of vx

= m
dvx
dt

= m
d2x

dt2
.

And there we are. One of the useful features of the Lagrangian is that the equation proved here can be

made to hold for different choices of coordinates. This enables the mechanics problems to be written in

coordinates that take advantage of symmetry (for example, if the only force is a radial one, attracting

or repelling particles from a single point), and the Lagrangian then provides a starting point to develop

relationships between the positions and velocities of the particles.

A.18 The overall energy before the collision is the sum of the two kinetic energies:

K = 1
2m1v

2
1 + 1

2m2v
2
2 ,

and this must equal the energy after the collision:

K = 1
2m1v

′
1
2

+ 1
2m2v

′
2
2
.

Similarly, we may set the expressions for the linear momentum before and after the collision equal to

each other:

p = m1v1 +m2v2 = m1v
′
1 +m2v

′
2.

So there are two equations and two unknowns. At this point, the problem is ready to solve with a

symbolic math program.

Maple. The problem can be solved in a single step by asking Maple to solve the conservation of

energy and conservation of momentum equations simultaneously to get the final speeds (here vf [1] and

vf [2] in terms of the masses and initial speeds:

solve({m[1]*v[1]+m[2]*v[2] = m[1]*vf[1]+m[2]*vf[2], (1/2) * m[1] * v[1]ˆ2+(1/2) * m[2] *

v[2]ˆ2 = (1/2) * m[1] * vf[1]ˆ2+(1/2) * m[2]*vf[2]ˆ2}, [vf[1], vf[2]]);
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On paper. This last equation lets us eliminate one variable by writing, for example, the final speed

v′2 in terms of v′1:

v′2 =
m1v1 +m2v2 −m1v

′
1

m2
.

Now we can put this value into the equation for K, and solve for v′1:

K = 1
2m1v

2
1 + 1

2m2v
2
2 (a)

= 1
2m1v

′
1
2

+ 1
2m2v

′
2
2

= 1
2m1v

′
1
2

+ 1
2m2

(
m1v1 +m2v2 −m1v

′
1

m2

)2

.

This is going to be an equation that depends on v′1
2

and v′1, so we can solve it using the quadratic

formula. In that case, it’s easiest to put all the quantities on one side of the equation:

0 = 1
2m1v

′
1
2

+ 1
2m2

(
m1v1 +m2v2 −m1v

′
1

m2

)2

− (
1
2m1v

2
1 + 1

2m2v
2
2

)
subtract (a) above

= 1
2m1v

′
1
2

+ 1
2m2

⎛
⎜⎜⎜⎜⎝

m2
1v

2
1 +m2

2v
2
2 +m2

1v
′
1
2

+2m1m2v1v2 − 2m2
1v1v

′
1 − 2m1m2v

′
1v2

m2
2

⎞
⎟⎟⎟⎟⎠ expand the square

− 1
2m1v

2
1 − 1

2m2v
2
2

= m1v
′
1
2

+
m2

1

m2
v21 +m2v

2
2 +

m2
1

m2
v′1

2
+ 2m1v1v2 divide by 1/2

− 2
m2

1

m2
v1v

′
1 − 2m1v

′
1v2 −m1v

2
1 −m2v

2
2

= v′1
2
(
m1 +

m2
1

m2

)
+ v′1

(
−2

m2
1

m2
v1 − 2m1v2

)
group by power of v′1

+

(
m2

1

m2
v21 +m2v

2
2 + 2m1v1v2 −m1v

2
1 −m2v

2
2

)

= v′1
2
(
m1 +

m2
1

m2

)
+ v′1

(
−2

m2
1

m2
v1 − 2m1v2

)

+

[(
m2

1

m2
−m1

)
v21 + 2m1v1v2

]

v′1 =

(
2m1 + 2

m2
1

m2

)−1{(
2
m2

1

m2
v1 + 2m1v2

)
quadratic formula

±
[(

2
m2

1

m2
v1 + 2m1v2

)2

− 4

(
m1 +

m2
1

m2

)[(
m2

1

m2
−m1

)
v21 + 2m1v1v2

]]1/2⎫⎬
⎭ .

To deal with this equation, we can expand the multiplication inside the square brackets:(
2
m2

1

m2
v1 + 2m1v2

)2

= 4
m4

1

m2
2

v21 + 8
m3

1

m2
v1v2 + 4m2

1v
2
2

−4

(
m1 +

m2
1

m2

)[(
m2

1

m2
−m1

)
v21 + 2m1v1v2

]
= −4

m3
1

m2
v21 − 4

m4
1

m2
2

v21 + 4m2
1v

2
1 + 4

m3
1

m2
v21
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− 8m2
1v1v2 − 8

m3
1

m2
v1v2.

Nearly all of these terms cancel when we add these two expressions together, leaving:

4m2
1v

2
2 + 4m2

1v
2
1 − 8m2

1v1v2.

In the quadratic equation, we have to take the square root of this, but that turns out to be easy:[
4m2

1v
2
2 + 4m2

1v
2
1 − 8m2

1v1v2
]1/2

= 2m1

[
v22 + v21 − 2v1v2

]1/2
= 2m1 (v2 − v1) .

Finally, putting this back into our equation for v′1, we get

v′1 =

(
2m1 + 2

m2
1

m2

)−1{(
2
m2

1

m2
v1 + 2m1v2

)
± 2m1 (v2 − v1)

}

=

(
1 +

m1

m2

)−1{(
m1

m2
v1 + v2

)
± (v2 − v1)

}
. divide out 2m1

This is correct as far as it goes, but we have two solutions, corresponding to either the + or − sign. If

we use the − sign, then we get

v′1 =

(
1 +

m1

m2

)−1{
m1

m2
v1 + v2 − v2 + v1

}
= v1.

This is the solution if the collision doesn’t occur; particle 1 just keeps moving at the same speed as

before. The + sign gives us the correct solution:

v′1 =

(
1 +

m1

m2

)−1{
m1

m2
v1 + v2 + v2 − v1

}

=

(
1 +

m1

m2

)−1 [(
m1

m2
− 1

)
v1 + 2v2

]
.

=
1

m1 +m2
[(m1 −m2) v1 + 2m2v2] .

We can now use the conservation of momentum to solve for v′2. I’m going to factor out a 1/(m1 +m2)

to get an equation similar to the one for v′1:

v′2 =
m1v1 +m2v2 −m1v

′
1

m2

=
1

m2

{
m1v1 +m2v2 − m1

m1 +m2
[(m1 −m2) v1 + 2m2v2]

}

=

(
m1

m2

)
v1 + v2 −

(
m1 −m2

m1 +m2

)(
m1

m2

)
v1 − 2

(
m1

m1 +m2

)
v2

=

(
1

m1 +m2

)[
m1(m1 +m2)

m2
v1 + (m1 +m2)v2 −

(
m1(m1 −m2)

m2

)
v1 − 2m1v2

]
=

1

m1 +m2
[(m2 −m1) v2 + 2m1v1] .
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Because there is nothing in the problem that determines which particle is labeled 1 and which is labeled

2, the equations for v′1 and v′2 must be exactly the same, with all the labels 1 and 2 switched.

If you haven’t seen this result or simply don’t remember it, it’s worthwhile to check a few values. For

example, if the two particles have equal mass (m1 = m2), then the final speeds are v′1 = v2 and v′2 = v1;

i.e., the particles simply exchange speeds. Another example: if particle 1 is initially at rest (v1 = 0),

then it picks up a speed 2m2v2/(m1 +m2) from the collision. In that case, if particle 2 dominates the

mass (m2 	 m1), then particle 1 will find itself with a final speed equal to 2v2. In contrast, if particle 1

is much more massive than 2, then the collision will hardly affect it (v′1 ≈ 0) and particle 2 will simply

reverse direction (v′1 ≈ −v2).

Note that the two particles don’t have to be moving in opposite directions. If particle 1 is behind 2

but moving faster and in the same direction, then they will strike each other, and particle 2 will acquire

particle 1’s higher speed.

A.19

K = U = − e2

4πε0r
=

(1.602 · 10−19 C)2

(1.113 · 10−10 C2 J−1 m−1)(1.0 Å)(10−10 m Å
−1

)
= 2.31 · 10−18 J

L = |�r × �p| = rp, since �r ⊥ �p.

p =
√

2meK =
[
2(9.109 · 10−31 kg) · (2.31 · 10−18 J)

]1/2
= 2.05 · 10−24 kg m s−1

L = (1.0 Å)(10−10 m Å
−1

)(2.05 · 10−24 kg m s−1) = 2.05 · 10−34 kg m2 s−1 .

A.20 a. Find the center of mass positions �r
(0)
i at collision. Let’s call the center of mass of the

entire system the origin. The particles have equal mass, so the origin will always lie exactly in

between the two particles. At the time of the collision, we may draw a right triangle for each

particle, connecting the particle’s center of mass, the origin, and with the right angle resting on

the z axis. The hypotenuse of the triangle connects the center of mass to the point of contact

between the two particles, and must be of length d/2 (the radius of the particle). The other two

sides are of length (d/2) cos θ (along the z axis) and (d/2) sin θ (along the x axis), based on the

definitions of the sine and cosine functions in Eqs. A.5. These correspond to the magnitudes of

the z and x coordinates, respectively, of the particle centers of mass at the collision. The signs of

the values may be determined by inspection of the figure: at the time of the collision, x1 and z2
are positive while x2 and z1 are negative, so the position vectors are:

�r
(0)
1 = ((d/2) sin θ, 0,−(d/2) cos θ)

�r
(0)
2 = (−(d/2) sin θ, 0, (d/2) cos θ) .

b. Find the velocities �v′i after collision. Simple collisions obey a simple reflection law: the angle

of incidence is equal to the angle of reflection. These are the angles between the velocity vectors

and the normal vector—the line at angle θ from the z axis. (This is the normal vector because

it lies perpendicular to the plane that lies between the two spheres at the point of collision; this

plane is effectively the surface of reflection for the collision.) Therefore, the velocity vector after

the collision is at an angle 2θ from the z axis, and the velocity vectors after the collision are

�v′1 = v0(sin 2θ, 0,− cos2θ)

�v′2 = v0(− sin 2θ, 0, cos 2θ).

Notice that the speed after the collision is still v0 for each particle. Because they each began with

the same magnitude of linear momentum, the momentum transfer that takes place only affects

the trajectories.
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c. Show that �L is conserved before and after the collision. We now have position and velocity

vectors before and after the collision:

�r1 = ((d/2) sin θ, 0,−(d/2) cos θ) + �v1t �r2 = (−(d/2) sin θ, 0, (d/2) cos θ) + �v1t

�v′′1 = v0(0, 0, 1) �v′′2 = v0(0, 0,−1)

�v′1 = v0(sin 2θ, 0,− cos2θ) �v′2 = v0(− sin 2θ, 0, cos 2θ).

We take the cross products of these for each particle to get �L for each particle, and we add these

together to get the total angular momentum for the system. Before the collision,

�r′′1 = ((d/2) sin θ, 0,−(d/2) cos θ) + v0t(0, 0, 1)

�L′′
1 = m�r′′1 × �v′′1

= m
(
y′′1v

′′
z1 − z′′1 vy1, z

′′
1 v

′′
x1 − x′′1vz1, x

′′
1v

′′
y1 − y′′1 vx1

)
= m (0,−(dv0/2) sin θ, 0)

and similarly for �L′′
2 :

�L′′
2 = m (0,−(dv0/2) sin θ, 0)

and combining these yields:

�L′′ = �L′′
1 + �L′′

2 = −mdv0 (0, sin θ, 0).

All of the position or velocity vectors have only zero y components, and therefore only the y

component of the cross product survives. After the collision,

�r′1 = ((d/2) sin θ, 0,−(d/2) cos θ) + v0t(sin 2θ, 0,− cos 2θ)

�L′
1 = m�r′1 × �v′1

which has a y component

�L′
y1 = m {−(d/2) cos θ sin 2θ − v0t cos 2θ sin 2θ − [(d/2) sin θ(− cos 2θ) + v0t sin 2θ(− cos 2θ)]}

and similarly for �L′
y2:

�L′
y1 = m {(d/2) cos θ(− sin 2θ) + v0t cos 2θ(− sin 2θ) − [−(d/2) sin θ cos 2θ − (−v0t sin 2θ) cos 2θ]} .

Adding the two components together we find that all the t-dependent terms cancel, and trigono-

metric identities from Table A.2 simplify the rest:

�L′
y = �L′

1y + �L′
2y

=
mdv0

2
[−2 cos θ sin 2θ + 2 sin θ cos 2θ]

sin 2θ = 2 sin θ cos θ

cos 2θ = 2 cos2 θ − 1

�L′
y =

2mdv0
2

[− cos θ (2 sin θ cos θ) + sin θ
(
2 cos2 θ − 1

)]
= mdv0

[−2 cos2 θ sin θ + 2 cos2 θ sin θ − sin θ
]

= −mdv0 sin θ.
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This is the y component of �L′, and the x and z components are again zero in the cross products,

so we have shown that both �L′ and �L′′ are equal to

�L = mdv0 (0, sin θ, 0).

If the particles hit head-on, then θ = 0 and the angular momentum is zero. As θ increases, L

increases to a maximum value of mdv0 when the two particles just barely touch each other in passing.

If we had used the conservation of L at the outset, we could have found this solution quickly. Because

the angular momentum does not depend on the size of the particles, we can replace our two objects

here with point masses. It won’t matter that they now won’t collide, because if L is conserved we have

to get the same answer before the collision takes place anyway. In fact, because L is conserved, we

can pick any point in time that’s convenient for us to calculate L, so I would pick the time when the

two particles reach z = 0. At this time, both particles are traveling on trajectories that are exactly

perpendicular to their position vectors (�vi is perpendicular to �ri). This makes the cross product for

each particle easy to evaluate:

�Li = m�ri × �vi = m(±(d/2) sin θ, 0, 0) × (0, 0,±v0) = mdv0/2(0, sin θ, 0),

where the minus sign applies to particle 2. There are two particles, so we multiply this vector by two,

arriving at the same �L as above.

A.21 a. Write �E1 in vector form. The magnitude of the electric field generated by particle 1 is

given by F = q2E1, and this force must be equal to the Coulomb force F = −q1q2/(4πε0r2). The

force vector points along the axis separating the two particles, and we can include this direction-

dependence by multiplying the magnitude of the vector by �r/r. The Cartesian form of the vector

�r from particle 1 to 2, just working off part (b) of the figure, may be written (rv1/c, y2, 0) and

has length

r =

[(rv1
c

)2
+ y22

]1/2
.

Therefore, the force vector is

�F =

(
q1q2

4πε0r2

)
�r

r
=

q1q2
4πε0r3

(rv1/c, y2, 0)

and the electric field vector is

�E1 =
�F

q2
=

q1
4πε0r3

(rv1/c, y2, 0).

b. Write �B in vector form. Here we just have to be careful to correctly evaluate the cross product.

We are using the equation �B = 1
c2
�E1 × �v1, and we have an equation for �E2 already. The velocity

vector consists only of an x-velocity component: �v1 = (v1, 0, 0). Notice that because these two

vectors lie in the xy plane, their cross product—which is perpendicular to both vectors —will lie

along the z axis. The z component of the cross product �a×�b is equal to axby − aybx, so we have

�B =
1

c2
�E1 × �v1 =

q1
4πε0c2r3

(0, 0, v1y2) .

c. Find the magnetic force vector. Again, we take a cross product with the velocity. This time,

the �B vector lies along z, and �v1 lies along x, so the cross product lies along y:

�Fmag = q2�v1 × �B =
q1q2

4πε0c2r3
(0, v21y2, 0) .
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d. Calculate the difference between the actual and classical values of the Coulomb force. To compute

the actual Coulomb force, we use the distance r, so �F has a magnitude

F =
q1q2

4πε0r2
.

The classical Coulomb force would be

F ′ =
q1q2

4πε0y22
,

and the difference between the two forces is

F − F ′ =
q1q2
4πε0

[
1

r2
− 1

y22

]
.

We can simplify this by relating r2 and y2:

r2 =
(rv1
c

)2
+ y22

r2 = y22

[
1 −

(v1
c

)2]−1

.

So, finally, we have

F − F ′ =
q1q2
4πε0

[
1

y2

[
1 −

(v1
c

)2]
− 1

y22

]

=
q1q2

4πε0y22

[
−
(v1
c

)2]
= − q1q2v

2
1

4πε0c2y22
.

In comparison, the magnitude of the magnetic force we calculated from the standard equations is

Fmag = q1q2v
2
1y2/(4πε0c

2r3),

and for v � c, we can allow r ≈ y2, so that

Fmag = q1q2v
2
1/(4πε0c

2y22).

Magnetic forces are a natural result of the motion of electrical charge when special relativity is

taken into account. It was this relationship between electric and magnetic forces that was the basis of

Einstein’s original paper on special relativity.

Chapter 1

1.1 Briefly, the nucleus of any atom except hydrogen has multiple protons, which repel each other,

coexisting at very small distances. With only protons and neutrons present, there is no negative charge

to counter the proton-proton repulsion, and the gravitational attraction between nuclear particles is

much too weak to play a role in holding the nucleus together. If our theories of mass and charge do not

explain the binding of positively charged protons into a nucleus, that suggests that there is some other

property that explains it. This reasoning led to the concepts of quark color and the strong force.
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1.2

The potential energy climbs to infinity at the walls and is zero in between. We know this because

the walls are impenetrable—the particles always bounce off the wall and transfer no energy into the

wall. In this idealized limit, no amount of energy in the particle will get it to occupy the region of the

wall, so the potential energy of the wall (the energy it would take to occupy that location) must be

infinite. At the wall, the slope of the potential energy is also infinite, so the force F = dU/dx is infinite,

but pushing back in the negative x direction, so F (x/a) = −∞. Within the container, there are no

forces working on the particles, so F and U = dF/dx are both equal to zero.

1.3 One approach would be the following:

1. Invent the scale as described in the chapter, using a spring to find forces by measuring the

displacement of the spring with our ruler.

2. Find the acceleration due to gravity g by measuring changes in speed of falling objects, using

the ruler and clock to compare Δ(distance)/Δ(time) at different times. Once g is known, we can

convert the weight of a water sample to a mass.

3. Finally, measure the volume of a sample of water with the ruler and a rectangular container for

the water.

The ratio of the mass to the volume will be the density.

1.4 We will need to figure out how the pressure at the bottom of the column varies with the mass of

water above it, and convert the mass to height. This problem can be started from either end, but let’s

start from how the mass determines the pressure:

P =
F

A
=
Mg

A
,

where F is the force exerted at the base of the column, M is the mass of the water in the column, and

g = 9.8 m s−2 is the acceleration due to gravity near the Earth’s surface. The mass is related to the

height through the density. The volume of the water is equal to the area A times the height z (which is

what we wish to solve), and the mass within a volume V is equal to the volume times the mass density
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ρm = 1.00 g cm−3 = 1.00 · 103 kg m−3. So we can set P = 1.00 bar = 1.00 · 105 Pa and solve for z:

P =
Mg

A
=
ρmV g

A
=
ρm(Az)g

A
= ρmgz

z =
P

ρmg
=

1.00 · 105 Pa

(1.00 · 103 kg m−3)(9.8 m s−2)

= 10. m.

1.5 Pressure is related to force through Eq. 1.4, and here we need to solve for the force:

F = PA

= (0.010 bar)(105 Pa bar−1)(78 × 30)(2.54 cm)2(10−2 m/ cm)2 = 1.5 · 103 N.

This force is equivalent to lifting a weight of

F

g
=

1.5 · 103 N

9.81 m s−2
= 150 kg.

1.6 The area of the water drop is

Awater = π(d/2)2 = 0.785 cm2 = 7.85 · 10−5 m2.

The approximate number of molecules that can fit in this area is given by the ratio of this area to the

effective area of a single molecule:

N ≈ Awater

Abutanol
=

7.85 · 10−5 m2

(33 Å
2
)(10−10 m Å

−1
)2

= 2.38 · 1014

We use Avogadro’s number to convert this value to the number of moles:

n =
N

NA
= 3.9 · 10−10 mol.

1.7 The force is given by the Coulomb force, Eq. A.41:

FCoulomb =
q1q2

4πε0r212
=

(1.602 · 10−19 C)2

1.113 · 10−10 C2 J−1 m−1(2.81 Å)2(10−10 m Å
−1

)2
= 2.92 · 10−9 N,

which may not look like much. But then to get the pressure we divide by a tiny area to get the effective

pressure:

P =
F

A
=

2.92 · 10−9 N

(4.00 Å
2
)(10−10 m Å

−1
)2

= 7.30 · 1010 Pa = 7.30 · 105 bar.

1.8 Since the overall entropy change must be positive, if the entropy of the system (the engine) is

−0.20 J K−1, then the entropy of the surroundings must rise to compensate by an amount

ΔSsurr ≥ +0.20 J K−1.

1.9 There are two contributions to the work. Which do you think is greater? Although 100 kg should

sound like a significant mass, the force generated by 1 bar of pressure over an area as large as 1 square

meter is much higher than you might think at first. A rough calculation will tell you: the force generated

by 1000 kg in the roughly 10 m s−2 acceleration of gravity is approximately (103 kg)(10 m s−2) = 104 N.

But the force generated by 105 Pa across 1 m2 is 105 N, so air pressure in this case is a much larger

contributor to the work that needs to be done.
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The pressure is constant throughout this process, so q is given by ΔH :

q = ΔH = 2.92 kJ.

The work is the sum of two terms: the work required to lift the mass of the platform against the pull

of gravity, and the work required to push an area of 1.00 m2 against the additional 1.00 bar of ambient

air pressure. These contributions are both negative because they require the system to do work on the

surroundings:

w = −
∫ z2

z1

(mg + PA) dz

= − (mg + PA) Δz

= − ((1.00 · 103 kg)(9.8 m s−2) + (1.00 · 105 Pa)(1.00 m2)
)

(0.060 m)

= −6588 J = −6.6 kJ.

And according to the first law, the change in energy is the sum of these two contributions:

ΔE = q + w = 2.92 kJ − 6.6 kJ = −3.7 kJ.

1.10 The value 4.5 J K−1 is equal to d̄qsurr/dT , the rate of heat loss per temperature increment. Setting

d̄qsurr = (4.5 J K−1)dT , we substitute this into Clausius’ definition of the entropy change, Eq. 1.10, to

find

ΔSsurr =

∫ T2

T1

d̄qsurr
dT

=

∫ 323K

298K

(4.5 J K−1)
dT

T
= (4.5 J K−1) ln

323 K

298 K
= 0.36 J K−1.

1.11 We want the probability distribution for speed, Pv(v), integrated only between the limits given.

∫ 103

102
Pv(v) dv = 4π

(
m

2πkBT

)3/2 ∫ 103

102
v2e−mv2/(2kBT ) dv.

Plugging in the mass, temperature, and kB, we find that

m

2kBT
=

(4.00 amu)(1.661 · 10−27 kg amu−1)

2(1.381 · 10−23 J K−1)(298 K)
= 8.07 · 10−7 s2 m−2.

So the final expression can be written

(1.64 · 10−9)

∫ 103

102
v2 exp(−8.07 · 10−7v2) dv.

1.12 We can expand the product (v − 〈v〉)3, and organize the results into factors of 〈v〉, 〈v2〉, and〈
v3
〉
. The expression for

〈
v2
〉

is already obtained in Eq. 1.23, and the others we can evaluate using the
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integrals over x2n+1e−ax2

in Table A.5:

μ3 =

∫ ∞

0

Pv(v)(v − 〈v〉)3 dv

=

∫ ∞

0

Pv(v)v3 dv − 3

∫ ∞

0

Pv(v)v2 〈v〉 dv + 3

∫ ∞

0

Pv(v)v 〈v〉2 dv −
∫ ∞

0

Pv(v) 〈v〉3 dv

=
〈
v3
〉− 3

〈
v2
〉 〈v〉 + 3 〈v〉 〈v〉2 − 〈v〉3

=
〈
v3
〉− 3

〈
v2
〉 〈v〉 + 2 〈v〉3

Pv(v) = Av2 e−av2

A = 4π

(
m

2πkBT

)3/2

a =
m

2kBT

〈v〉 = A

∫ ∞

0

v3 e−av2

dv =
A

2a2
=

(
8kBT

πm

)1/2

〈
v2
〉

=
3kBT

m〈
v3
〉

= A

∫ ∞

0

v5 e−av2

dv =
2A

2a3
=
π

2

(
8kBT

πm

)3/2

μ3 =
π

2

(
8kBT

πm

)3/2

− 3

(
3kBT

m

)(
8kBT

πm

)1/2

+ 2

(
8kBT

πm

)3/2

=

(
8kBT

πm

)3/2 (
π

2
− 9π

8
+ 2

)

=

(
8kBT

πm

)3/2 (
2 − 5π

8

)
.

Maple. The integral for μ3 can be solved in a few steps using Maple, using the following commands:

1. Pv:=v->4*Pi*(abs(m/kT)/(2*Pi))ˆ(3/2)*vˆ2*exp(-abs(m/kT)*vˆ2/2);

2. avgv:=integrate(Pv(v)*v,v=0..infinity);

3. int(Pv(v)*(v-avgv)ˆ3, v = 0 .. infinity);

Note the use of abs for m/kT. That’s because Maple needs to know that the coefficient (m/kT) in

the exponential is positive in order to arrive at the correct analytical solution. The general solution,

which allows for the argument of the exponential to be positive or negative, employs the error function

(appearing in Maple as erf), which is not especially helpful.

1.13 The integral is∫ 10m/ s

0

Pv(v)dv = 4π

(
m

2πkBT

)3/2 ∫ 10m/ s

0

v2e−mv2/(2kBT ) dv

The approximation we can use is that ex ≈ 1 + x when x is small:∫ 10m/ s

0

Pv(v)dv ≈ 4π

(Cπ)3/2

∫ v1

0

v2
(

1 − v2

C

)
dv

=
4√
πC3/2

[
v31
3

− v51
5C

]
,

where C = 1.77 · 105 m2/ s2 and v1 = 10.0 m/ s. Substituting these numbers in yields a fraction of

1.01 · 10−5.

Maple. The integral can be solved numerically in Maple with the command

int(4*Pi*vˆ2*exp(-vˆ2/(0.177e6))/(0.177e6*Pi)ˆ(3/2), v = 0 .. 10);
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Chapter 2

2.1 This is just a qualitative test of our understanding of the canonical distribution. The fractional

probability must always be a number between 0 and 1. Any vibrational state v = 0, 1, . . . may be

populated, but the probability is significant only if the vibrational energy is not large compared to the

thermal energy kBT . In this example, we are looking for the probability of the molecule being at the

(v = 1) energy of one vibrational constant, 200 cm−1, which corresponds to roughly 300 K, so we should

expect that a significant fraction of the molecules may be able to get to this level. Therefore, the only

reasonable answer is (c) 0.24.

2.2 This is applying our approximation that the two-particle degeneracy g2 is roughly g21 . We start

from the one-particle degeneracy in the three-dimensional box, but use ε equal to one-half the total

energy:

g1(ε) =
32πV (2m3ε)1/2dε

h3

=
32π(1.00 · 10−9 m3)[2(39.9 amu)3(1.661 · 10−27 kg amu−1)3(1.00 · 10−20 J)]1/2(2.5 · 10−26 J)

(6.626 · 10−34 J s)3

= 2.08 · 1019

g2 ≈ g21 = 4.35 · 1038

2.3 For non-interacting particles, the total degeneracy is the product of the component degeneracies.

gA+B = gAgB

=
[
V NAf(EA, NA)

] [
V NBf(EB, NB)

]
= V NA+NBf(EA + EB, NA +NB)

2.4 [Thinking Ahead: Imagine that the container is a balloon filled with air—what would happen

when the balloon encountered this state? There would suddenly appear a 10 cm3 region of vacuum

inside the balloon, and you would see dimples on the surface as the walls of the balloon contracted. As

you might guess, that state is not likely to come along anytime soon.] The number of states at some

fixed energy is the degeneracy, which for particles in a box obeys the relation

g(E) = V Nf(E,N).

For our case, N = 0.05NA = 3.01 · 1022. If we count all the states for which V1 = 0.99V , we find

g(E, V1)

g(E, V )
=

(
(0.99 V )Nf(E,N)

V Nf(E,N)

)

= (0.99)N = 0.993.01·10
22 ≈ 0.

In fact, such a state is unlikely to be detected in the box at any instant over the present age of the

universe.

2.5 [Thinking Ahead: Should this function increase or decrease with the value of n2? Because the

thermal energy is proportional to temperature, we can safely expect it to increase as the n2 (and

therefore the energy) increases.] We need to solve the derivative in Eq. 2.24:

T ≡
(
∂E

∂S

)
V,N

,
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