
Object-Oriented Program Development Using Java, A Class-Centered Approach, Enhanced Edition 2-1

Chapter 2

Creating Classes

At a Glance

Instructor’s Manual Table of Contents

• Overview

• Objectives

• Instructor Notes

• Quick Quizzes

• Discussion Questions

• Key Terms

Object-Oriented Program Development Using Java, A Class-Centered Approach, Enhanced Edition 2-2

Lecture Notes

Overview

Chapter 2 discusses the concepts needed to create classes. The first section focuses on the
various primitive data types available in Java programs. The arithmetic operators that can be
used to perform calculations on numerical values are introduced. Students will learn the
precedence and associativity for these operators. As discussed in Chapter 1, a class consists of
two sections: the data declaration section and the method definition section. The next two
sections of the chapter focus on these in turn. Students will also learn to use assignment
operators. The final section focuses on the initial modeling stage of program development. In
this stage, the objects that will be used in a program are identified in a model.

Chapter Objectives
Students should be able to describe:

• Data Values and Arithmetic Operations
• Constructing a Data Declaration Section: Variables
• Completing the Class: Methods
• Assignment Operations
• Program Design and Development: Object Identification
• Common Programming Errors

Instructor Notes

Data Values and Arithmetic Operations

Java data types are divided into two general categories: primitive and reference types. Primitive
types are used to represent numbers, character data, Booleans. Reference types are associated
with classes, arrays, and interfaces. The primitive data types are shown in Figure 2.1, reference
types in Figure 2.2. A literal is a value that explicitly identifies itself such as 1 or “Hello
World.”

Integer Literals

An integer is a whole number without a decimal point. In Java, integer literals range between
-2147483648 and +2147483647. They are stored in 4 bytes. Java also defines a long integer
type that is stored in 8 bytes and ranges between -9223372036854775808 and
+9223372036854775807. These numbers are written by adding an L to the end of the number:
8976929L. Short and byte integer types can also be used for variables, but not literals. Integer
data types are summarized in Table 2.1.

Object-Oriented Program Development Using Java, A Class-Centered Approach, Enhanced Edition 2-3

Floating-Point Values

A floating-point value is a real number, positive or negative, with a decimal point. Java defines
two data types that store floating-point values: double and float. A float number is stored
in 4 bytes and a double in 8. Table 2.2 summarizes floating-point data types. Floating-point
numbers can be expressed in exponential notation as shown on page 64.

Character Values

Character values are letters and numbers. Character literals are represented by placing a
character inside single-quotes, such as ‘a.’ Java stores characters using Unicode encoding as
unsigned integers. Character strings are reference types of the class String.

Teaching
Tip

Students can learn more about Unicode from the site: www.unicode.org/

Escape Sequences

Escape sequences are created by placing a \ in front of one or more characters. This indicates to
the compiler that special processing is required. Table 2.4 lists escape sequences.

Boolean Values

Boolean data must have a value of either true or false. Boolean variables are used for
conditional processing.

Arithmetic Operations

Java supports the standard mathematical operators +, -, *, /, and %. A simple arithmetic
expression combines two operands with one operator. An example of such an expression is 1 +
1. When evaluating a simple arithmetic expression, the rules listed in the middle of page 68
govern the data type of the result.

Arithmetic expressions can be used as parameters to methods such as those that output results.
For example, the expression System.out.println(1+1) will output the result 2.
Special caution should be used when combining string data with numbers in an output
statement. The + symbol is the string concatenation operator, and is evaluated before the
addition operator.

QuickTest Program 2.1 outputs arithmetic operation results using
System.out.println().

http://www.unicode.org/

Object-Oriented Program Development Using Java, A Class-Centered Approach, Enhanced Edition 2-4

Teaching
Tip

Students should create their own programs to perform arithmetic calculations.
They should note how the rules of precedence apply by creating equations that
exercise these rules.

An overloaded operator is an operator that acts differently depending on the operands it is
working on. In the case of the + operator, the operator works differently based on whether
integers, floating-point numbers, or even strings are the operands.

Teaching
Tip

Overloading is an important concept in object-oriented programming and will be
covered more fully later in the book.

Integer Division

Integer division results in dropping the fractional part of the result. Therefore, 15/2 = 7.

The Modulus Operator

The modulus operator is represented using the % symbol. This operator returns the remainder
of a division. For example, 15 % 4 = 3.

Negation

Negation is a unary operator that reverses the sign of the operand. The symbol for negation is
the same as that for subtraction: -.

Operator Precedence and Associativity

The rules for operator precedence are listed on page 72. Parentheses are used to indicate that
certain operations should be performed first. Table 2.7 summarizes these rules. Note that the
rules for Java operator precedence are the standard rules used in mathematics.

String Concatenation

The string concatenation operator joins two strings into one. It is represented using the +
symbol. Note that when performing string concatenation, it is important to include a space
character in one of the strings (if a space between words is desired).

Object-Oriented Program Development Using Java, A Class-Centered Approach, Enhanced Edition 2-5

Quick Quiz

1. What are the integer data types?
Answer: byte, short, int, and long

2. Provide an example of a mixed-mode expression.

Answer: 1.2 + 3

3. What is the result of 5/2?
Answer: 2

4. What operator is used to perform string concatenation?

Answer: +

Constructing a Data Declaration Section: Variables

Integer, floating-point, and character data is stored in and retrieved from the computer’s
memory. Memory is divided into addressed locations, and the data that is stored in memory is
accessed by address. Figure 2.4 illustrates this concept. A variable is a name given by a
programmer to a memory address, and is used to reference the data stored in that addressed
space. The rules for selecting variable names are the same as for other identifiers such as class
and method names.

Assignment statements, such as num1 = 4, are used to assign values to the memory locations
referenced by variables. An assignment statement can either assign a literal value to a variable
or the value of one variable to another. The = symbol is the assignment operator.

Declaration Statements

A declaration statement specifies the data type and name of a variable. The format for a Java
declaration statement is:

 optionalAccessSpecifier dataType variableName;

The optional access specifier is public, private, protected, or left blank. The int data type is used
to store an integer. The float and double data types store floating-point values. An initial value
for a variable can be assigned by combining the variable declaration with an assignment
statement in the form:

 private int num1 = 15;

Constructing a Data Declaration Section

A variable’s classification depends on where in the class it is declared and the modifiers used in
the declaration. Table 2.8 explains the four variable classifications: instance, class, local, and
parameter. The table indicates where each type of variables is declared within a class.

Object-Oriented Program Development Using Java, A Class-Centered Approach, Enhanced Edition 2-6

Instance variables are the most commonly used. Instance variables are declared at the
beginning of a class in the data declaration section. An example class definition with the data
declaration section completed is:

 public class RoomType

{
 // data declarations section
 private double length; // declare length as a double variable
 private double width; // declare width as a double variable
 //method definitions section

}

Creating Objects

Java objects are created using the new operator. The format for using this operator is:

 variableName = new ClassName();

Before an object is created, a variable of that object type must be declared. As with primitive
variable declarations, the declaration and initialization of a reference variable can be completed
in one statement:

 ClassName variableName = new ClassName();

An object can be declared as an instance variable, as a class variable, or as a local variable. A
local variable is declared within a method and the declaration does not include a visibility
modifier. All local variables are private.

When a variable representing an object is declared, its value is initialized to null. Null is a
special value that indicates that an object is uninitialized. Once an object is created using the
new operator space for that object, including memory locations for each instance variable, are
created. This is illustrated in Figure 2.8. The new operator is also referred to as the dynamic
memory allocation operator. The process of creating a class is also called instantiating a class.

An important difference between a primitive data type (such as an integer) and a reference data
type (such as a class) is that the primitive variable identifier refers directly to a memory
address, while the reference variable identifier points to a memory location where the object is
stored.

Each instance of a class that is created has its own instance variables. Figure 2.9 illustrates this
concept.

Notice the private modifier given to the length and width instance variables in the text in
Program 2.2 (and above). This means that these variables can only be accessed from within the
class. In order for other classes to reference these variables, methods must be developed for the
class. This technique enforces data security.

Object-Oriented Program Development Using Java, A Class-Centered Approach, Enhanced Edition 2-7

Cleansing Memory

When a reference variable is reassigned to another location, the memory location that it used to
point to remains occupied with data, but there is no way to reference this data. This is
illustrated in Figure 2.10. Eventually, memory becomes filled up with such useless data. This is
called a memory leak. In older programming languages, programmers were responsible for
releasing memory locations that were no longer used. Sloppy programming could lead to
memory leaks. The Java language frees programmers from this concern through a process
known as garbage collection. The JVM periodically cleans up memory locations that are no
longer referenced by the program without any need for the programmer to do anything.

Teaching
Tip

Read more about garbage collection: www.javacaps.com/scjp_gar.html

Specifying Storage Allocation

There are several reasons for specifying variable names and data types in a data declaration
section. The first reason is that it provides the programmer a convenient list of the variables
that will be used in a program. The second is that it protects the programmer against spelling
errors in variable names that might cause logical program errors. Thirdly, Java can allocate the
correct amount of space for a variable based on its data type.

Quick Quiz

1. How would you declare a private instance variable named sum with an int data type?
Answer: private int sum;

2. Which operator is used to create an instance of a class?

Answer: new

3. True or False: Java does not have the same potential for memory leak problems that
older programming languages do.
Answer: True

http://www.javacaps.com/scjp_gar.html

Object-Oriented Program Development Using Java, A Class-Centered Approach, Enhanced Edition 2-8

Completing the Class: Methods

Table 2.9 lists three types of methods that all classes should have. Generally, classes also
provide other methods to implement specific functionality. Each method consists of a method
header and a method body. The format for a method header is shown in Figure 2.13.

Constructor Methods

When the new operator is used to create an instance of a class, the constructor method for the
class is called by the JVM. The purpose of a constructor is to initialize the instance variables of
the class. As shown in Figure 2.14, the name of a constructor is the same as the name of the
class, and the declaration does not include a return type. A class can have no constructor, or
more than one constructor. If more than one constructor exists, each one must differ in the
number and/or type of parameters. If no constructor is provided, each instance variable is
initialized to the default values listed in Table 2.10. A constructor that does not define any
parameters is called a default constructor.

An example of a constructor for the RoomType class is:

 public RoomType()

{
 length = 0.0;
 width = 0.0;

}

Accessor Methods

An accessor method is used to access the value of an instance variable (or information derived
from instance variables). Another name for an accessor is a get() method. It is common to
name an accessor method getX() where X is the name of the referenced variable.

Mutator Methods

The purpose of a mutator method is to change the value of an instance variable. Another name
for a mutator method is a set() method. It is common to name a mutator method setX()
where X is the name of the referenced variable.

Teaching
Tip

The concept of encapsulation or data hiding is very important in object-oriented
programming. An article on this subject can be found here:
www.developer.com/java/other/article.php/3387591

http://www.developer.com/java/other/article.php/3387591

Object-Oriented Program Development Using Java, A Class-Centered Approach, Enhanced Edition 2-9

In addition to constructors, accessors, and mutators, methods for a class provide the behavior
for the class. For example, a method calculateArea() for the RoomType class would
print the product of the length and width as shown on page 95.

The full listing for the RoomType class appears on page 96. Program 2.3 on page 97 makes
use of the RoomType class in a Java program. When calling methods belonging to a class
from another object, it is necessary to specify the variable name that refers to the instance of the
class. The format for doing so is:

 instanceName.methodName();

When calling a method from within a class, the method name alone can be used. As an
alternative the this keyword can be used as the instance name:

this.methodName();

Convenience

For the purpose of convenience, classes may be combined into a single file in one of two ways.
As shown on pages 100-101, the main() method from one class may become a method of
the other class in order to test the functionality of the class. An alternative is to write both
classes in a single .java file, but remove the public modifier from the class that does not declare
a main() method.

Assignment Operations

Assignment statements are used to assign values to variables. The assignment operator most
commonly used in Java is the = symbol. The operand that appears to the right of the = operator
is a literal value, a variable, or an expression. An expression is any combination of constants
and variables that can be evaluated to yield a result. Several examples of assignment statements
are shown at the bottom of page 103.

QuickTest Program 2.6 uses assignment statements to calculate the area of a rectangle.
QuickTest Program 2.7 presents the same information in a dialog.

Multiple Declarations

Declarations of variables with the same data type can be grouped together. For example:

 double length, width, area;

Object-Oriented Program Development Using Java, A Class-Centered Approach, Enhanced Edition 2-10

Coercion

When assignment statements mix data types, data type conversion is sometimes performed. A
coercion automatically occurs only when a smaller range numerical data type is assigned to a
variable of a larger range type. An example of this would be assigning an integer value to a
double variable. It is not possible to perform the reverse operation since data would be lost.

Assignment Variations

It is possible to use the same variable on both sides of an assignment statement. For example,
sum = sum + 10; increments the value of the sum variable by 10. This type of assignment
statement can be written using one of the shortcut assignment operators that are listed on page
108.

Accumulating

A common programming calculation is accumulating. This involves adding values to one
variable, as shown on page 109. QuickTest Program 2.9 performs an accumulation. QuickTest
Program 2.10 performs an accumulation on strings.

Counting

Another common calculation involves adding a fixed number to a variable repeatedly. The
increment operator ++ is used to increment a number by 1. The -- operator is called the
decrement operator and subtracts 1 from the number. These operators can be placed on either
side of the variable as either a prefix or postfix operator. When used in a prefix position, the
increment/decrement is performed before value is used in an assignment expression. When
placed in a postfix position the increment/decrement is used after the assignment is made.

Program Design and Development: Object Identification

When creating an object-oriented program to solve a problem, a systematic series of steps can
be followed to develop the program. The first step is to develop a model to represent the
problem. Since the program will be object-oriented, the model must consist of one or more
objects. Each object is identified by name, and in terms of its attributes and behaviors. An
object diagram, such as that shown in Figure 2.22 identifies an object, its attributes, and its
behaviors.

From Objects to Classes

The next step in the process is to create a Java class that matches the object diagram. The object
attributes are translated into variables, while the behaviors become methods. An instance of this
class is said to have a state. Practically, the state is defined by the values of each instance
variable.

Object-Oriented Program Development Using Java, A Class-Centered Approach, Enhanced Edition 2-11

Procedural versus Object Orientations

Comparing Program 2.12 with QuickTest Program 2.13 shows the difference between object-
orientation and procedure-orientation for a program. The two programs produce the same
result, but the way they work is very different. Program 2.12 uses an object RoomType to
encapsulate information for the needed calculations. QuickTest Program 2.13 simply performs
the calculations using primitive values.

Quick Quiz

1. What is another name for an accessor method?
Answer: A get() method

2. Provide an example of an assignment statement.

Answer: sum = 10;

3. A(n) ____ automatically occurs only when a smaller range numerical data type is
assigned to a variable of a larger range type.
Answer: coercion

4. Provide an example of using the prefix decrement operator.

Answer: --value;

5. What is the first step in creating an object-based model?
Answer: Thinking in objects

Discussion Questions

• How do you choose what data type to use for a variable?
• What are the implications of changing a data type once a program has been written?
• What (if any) is a disadvantage of using private instance variables and accessor and mutator

methods over public instance variables?
• Under what circumstances should a variable be local rather than an instance variable?

Object-Oriented Program Development Using Java, A Class-Centered Approach, Enhanced Edition 2-12

Key Terms

 Accessor Method: A member method that accesses a class’s private data members for the
purpose of returning individual values

 Attribute: Defines the properties of interest for an object
 Behavior: Defines how the object reacts to its environment
 Boolean: A data type restricted to one of two values: true or false
 Char: A data type, includes the letters of the alphabet (both uppercase and lowercase), the

10 digits 0 through 9, and special symbols such as 1 $. , - !
 Constructor: Any method that has the same name as its class
 Double: A floating-point value required to be stored using 8 bytes
 Float: A floating-point number stored using 4 bytes
 Implicit (Implied) Object: An object name that precedes the method name when the

method is called
 Instance Variable: Any variable whose declaration statement is placed within a class’s

body and outside any method and does not contain the static reserved word
 Int: Any integer value within the range 22147483648 to 12147483647 that must be stored

using 4 bytes
 Integer: A whole number
 Model: A representation of a problem
 Object Diagram: A diagram that identifies attributes and behavior of object
 Operator Associativity: Ordering of computation of operators
 Operator Precedence: Priority relative to all other operators
 Primitive Data Types: Numerical types known as integers and floating-point numbers and

the character and Boolean types
 Real Number: A number with a decimal point
 Reference Data Types: Classes, arrays, interfaces
 String Concatenation: Adding two strings together to form one
 This Reference: An object that a method is to operate on
 Variable: Programmer-defined name for memory address whose value may vary during

program execution

	Chapter 2
	At a Glance
	Instructor’s Manual Table of Contents

	Overview
	Chapter Objectives
	Instructor Notes
	Teaching Tip
	Teaching Tip
	Teaching Tip
	Teaching Tip
	Teaching Tip

	Discussion Questions
	Key Terms

