## **SOLUTIONS MANUAL**

to

# INTRODUCTION TO MICROELECTRONIC FABRICATION

### **SECOND EDITION**

by

#### **RICHARD C. JAEGER**

#### **CHAPTER 1**

#### 1.1

Answering machine Alarm clock Automatic door Automatic lights ATM Automobile: Engine controller Temp. control ABS Electronic dash Automotive tune-up equip. Bar code scanner Battery charger Calculator Camcorder Carbon monoxide detector Cash register Cellular phone Copier Cordless phone Depth finder Digital watch Digital scale Digital thermometer **Digital Thermostat** Electric guitar Electronic door bell Electronic gas pump Exercise machine Fax machine Fish finder Garage door opener GPS Hearing aid Inkjet & Laser Printers Light dimmer Musical greeting cards Keyboard synthesizer Keyless entry system Laboratory instruments Model airplanes Microwave oven Musical tuner Pagers Personal computer Personal planner/organizer

Radar detector Radio Satellite receiver/decoder Security systems Smoke detector Stereo system Amplifier CD player Receiver Tape player Stud sensor Telephone Traffic light controller TV & remote control Variable speed appliances Blender Drill Mixer Food processor Fan Vending machines Video games Workstations

Electromechanical Appliances\*

Air conditioning Clothes washer Clothes dryer Dish washer Electrical timer Thermostat Iron Oven Refrigerator Stove Toaster Vacuum cleaner

\*These appliances are historically based only upon on-off (bang-bang) control. However, many of the high-end versions of these appliances have now added sophisticated electronic control. 1.2 (a)  $A = \pi d^2/4$ 

| d (mm)                                                                            |     |      |      |      |       |       |       | 300   | 450    |
|-----------------------------------------------------------------------------------|-----|------|------|------|-------|-------|-------|-------|--------|
| $A (mm^2)$                                                                        | 491 | 1960 | 4420 | 7850 | 12300 | 17700 | 31400 | 70700 | 159000 |
| (b) $n = \pi (450)^2 / (4)(1^2) = 159043$ (b) $n = \pi (450)^2 / (4)(25^2) = 254$ |     |      |      |      |       |       |       |       | 4      |

1.3 (a) 
$$n = \pi (300)^2 / (4)(20^2) = 177$$



(b) n = 148

1.4 
$$B = 19.97 \times 10^{0.1977(2020-1960)} = 1.45 \times 10^{13}$$
 bits

1.5 
$$N = 1027 \times 10^{0.1505(2020-1970)} = 34.4 \times 10^9$$
 transistors

1.6

B = 19.97 x 10<sup>0.1977(Y-1960)</sup> 
$$Y_2 - Y_1 = \frac{\log \begin{pmatrix} B_2 \\ B_1 \end{pmatrix}}{0.1977}$$
  
(a)  $Y_2 - Y_1 = \frac{\log(2)}{0.1977} = 1.52$  years (b)  $Y_2 - Y_1 = \frac{\log(10)}{0.1977} = 5.06$  years

N = 1027 x 10<sup>0.1505(Y-1970)</sup> 
$$Y_2 - Y_1 = \frac{\log(\frac{N_2}{N_1})}{0.1505}$$
  
(a)  $Y_2 - Y_1 = \frac{\log(2)}{0.1505} = 2.00$  years (b)  $Y_2 - Y_1 = \frac{\log(10)}{0.1505} = 6.65$  years

- 1.8  $F = 8.214 \times 10^{-0.06079(2020-1970)} \mu m = 7.50 \times 10^{-3} \mu m = 75$  Å. Using 5 Å for the diameter of an atom, this feature size is only 15 atoms wide. However, this narrow width can probably can be achieved.
- 1.9  $(3 \times 10^8 \text{ tubes})(0.5 \text{ W/tube}) = 150 \text{ MW}!$   $I_{RMS} = (150 \text{ MW})/(220 \text{ V}_{RMS}) = 685 \text{ kA}$
- 1.10 (a) L = (25mm)(18mm/0.5mm) = 0.90 m !
  (b) L = (25mm)(18mm/0.2mm) = 2.25 m !!
- 1.11 Two Possibilities



1.12 (a) From Fig. 1.1b, a 75 mm wafer has 130 total dice. The cost per good die is  $400/(0.35 \times 130) = 8.79$  for each good die. (b) The 150 mm wafer has a total of 600 dice yielding a cost of  $400/(0.35 \times 600) = 1.90$  per good die.

1.13

(a) N =  $5000^2/25(1^2) = 1$  million transistors (b) N =  $5000^2/25(0.25^2) = 16$  million transistors

(c) N = 
$$5000^2/25(0.1^2) = 100$$
 million transistors

| 1.14 | Thermal oxidation                           | NC 1 1 |
|------|---------------------------------------------|--------|
|      | n <sup>+</sup> diffusion mask<br>Oxide etch | Mask 1 |
|      | $n^+$ diffusion and oxidation               |        |
|      | Contact opening mask                        | Mask 2 |
|      | Oxide etch                                  |        |
|      | Metal deposition                            |        |
|      | Metal etch mask                             | Mask 3 |
|      | Metallization etch                          |        |

1.15

