SOLUTIONS MANUAL

to
 INTRODUCTION TO
 MICROELECTRONIC FABRICATION SECOND EDITION
 by
 RICHARD C. JAEGER

CHAPTER 1

1.1

Answering machine
Alarm clock
Automatic door
Automatic lights
ATM
Automobile:
Engine controller
Temp. control
ABS
Electronic dash
Automotive tune-up equip.
Bar code scanner
Battery charger
Calculator
Camcorder
Carbon monoxide detector
Cash register
Cellular phone
Copier
Cordless phone
Depth finder
Digital watch
Digital scale
Digital thermometer
Digital Thermostat
Electric guitar
Electronic door bell
Electronic gas pump
Exercise machine
Fax machine
Fish finder
Garage door opener
GPS
Hearing aid
Inkjet \& Laser Printers
Light dimmer
Musical greeting cards
Keyboard synthesizer
Keyless entry system
Laboratory instruments
Model airplanes
Microwave oven
Musical tuner
Pagers
Personal computer
Personal planner/organizer

Radar detector
Radio
Satellite receiver/decoder
Security systems
Smoke detector
Stereo system
Amplifier
CD player
Receiver
Tape player
Stud sensor
Telephone
Traffic light controller
TV \& remote control
Variable speed appliances
Blender
Drill
Mixer
Food processor
Fan
Vending machines
Video games
Workstations

Electromechanical Appliances*
Air conditioning
Clothes washer
Clothes dryer
Dish washer
Electrical timer
Thermostat
Iron
Oven
Refrigerator
Stove
Toaster
Vacuum cleaner
*These appliances are historically based only upon on-off (bang-bang) control. However, many of the high-end versions of these appliances have now added sophisticated electronic control.
$1.2 \quad$ (a) $\mathrm{A}=\pi \mathrm{d}^{2} / 4$

$\mathrm{d}(\mathrm{mm})$	25	50	75	100	125	150	200	300	450
$\mathrm{~A}\left(\mathrm{~mm}^{2}\right)$	491	1960	4420	7850	12300	17700	31400	70700	159000

(b) $\mathrm{n}=\pi(450)^{2} /(4)\left(1^{2}\right)=159043$
(b) $\mathrm{n}=\pi(450)^{2} /(4)\left(25^{2}\right)=254$
1.3 (a) $\mathrm{n}=\pi(300)^{2} /(4)\left(20^{2}\right)=177$
(b) $\mathrm{n}=148$

$1.4 \quad \mathrm{~B}=19.97 \times 10^{0.1977(2020-1960)}=1.45 \times 10^{13} \mathrm{bits}$
$1.5 \mathrm{~N}=1027 \times 10^{0.1505(2020-1970)}=34.4 \times 10^{9}$ transistors
1.6
$\mathrm{B}=19.97 \times 10^{0.1977(\mathrm{Y}-1960)} \quad \mathrm{Y}_{2}-\mathrm{Y}_{1}=\frac{\log \left(\mathrm{B}_{2} / \mathrm{B}_{1}\right)}{0.1977}$
(a) $Y_{2}-Y_{1}=\frac{\log (2)}{0.1977}=1.52$ years (b) $Y_{2}-Y_{1}=\frac{\log (10)}{0.1977}=5.06$ years
1.7
$\mathrm{N}=1027 \times 10^{0.1505(\mathrm{Y}-1970)}$

$$
\mathrm{Y}_{2}-\mathrm{Y}_{1}=\frac{\log \left(\mathrm{N}_{2} / \mathrm{N}_{1}\right)}{0.1505}
$$

(a) $Y_{2}-Y_{1}=\frac{\log (2)}{0.1505}=2.00$ years
(b) $Y_{2}-Y_{1}=\frac{\log (10)}{0.1505}=6.65$ years
$1.8 \quad \mathrm{~F}=8.214 \times 10^{-0.06079(2020-1970)} \mu \mathrm{m}=7.50 \times 10^{-3} \mu \mathrm{~m}=75 \AA$. Using $5 \AA$ for the diameter of an atom, this feature size is only 15 atoms wide. However, this narrow width can probably can be achieved.
$1.9\left(3 \times 10^{8}\right.$ tubes $)(0.5 \mathrm{~W} /$ tube $)=150 \mathrm{MW}!\quad \mathrm{I}_{\mathrm{RMS}}=(150 \mathrm{MW}) /\left(220 \mathrm{~V}_{\mathrm{RMS}}\right)=685 \mathrm{kA}$
1.10 (a) $\mathrm{L}=(25 \mathrm{~mm})(18 \mathrm{~mm} / 0.5 \mathrm{~mm})=0.90 \mathrm{~m}$!
(b) $\mathrm{L}=(25 \mathrm{~mm})(18 \mathrm{~mm} / 0.2 \mathrm{~mm})=2.25 \mathrm{~m}$!!
1.11 Two Possibilities

276 Dice

277 Dice
1.12 (a) From Fig. 1.1b, a 75 mm wafer has 130 total dice. The cost per good die is $\$ 400 /(0.35 \times 130)=\$ 8.79$ for each good die. (b) The 150 mm wafer has a total of 600 dice yielding a cost of $\$ 400 /(0.35 \times 600)=\$ 1.90$ per good die.
1.13
(a) $\mathrm{N}=5000^{2} / 25\left(1^{2}\right)=1$ million transistors
(b) $\mathrm{N}=5000^{2} / 25\left(0.25^{2}\right)=16$ million transistors
(c) $\mathrm{N}=5000^{2} / 25\left(0.1^{2}\right)=100$ million transistors
1.14 Thermal oxidation
n^{+}diffusion mask
Oxide etch
n^{+}diffusion and oxidation
Contact opening mask
Oxide etch
Metal deposition
Metal etch mask

Mask 2
Mask 1

Mask 3

Metallization etch
1.15

