Solution Manual for Fundamentals of Electromagnetics for Electrical and Computer Engineering

Nannapaneni Narayana Rao
Edward C. Jordan Professor Emeritus of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, USA
Distinguished Amrita Professor of Engineering
Amrita Vishwa Vidyapeetham (Amrita University), India

All rights reserved

CONTENTS

Chapter 1 1
Chapter 2 15
Chapter 3 29
Chapter 4 41
Chapter 5 59
Chapter 6 82
Chapter 7 104
Chapter 8 134
Chapter 9 153
Chapter 10 170
Appendix A 183
Appendix B 187

CHAPTER 1

1.1. (a) Total distance $=1+\frac{1}{2}+\frac{1}{4}+\cdots=\frac{1}{1-1 / 2}=2 \mathrm{~m}$
(b) Distance north $=1-\frac{1}{4}+\frac{1}{16}-\cdots=\frac{1}{1+1 / 4}=0.8 \mathrm{~m}$ Distance east $=\frac{1}{2}-\frac{1}{8}+\frac{1}{32}-\cdots=\frac{1}{2}\left(1-\frac{1}{4}+\frac{1}{16}-\cdots\right)=0.4 \mathrm{~m}$
\therefore Final position is $(0.8,0.4)$
(c) Straight line distance $=\sqrt{(0.8)^{2}+(0.4)^{2}}=0.8944 \mathrm{~m}$
1.2. $\mathbf{A}+\mathbf{B}+\mathbf{C}=2 \mathbf{a}_{1}+3 \mathbf{a}_{2}+2 \mathbf{a}_{3}$
$2 \mathrm{~A}+\mathbf{B}-\mathbf{C}=\mathbf{a}_{1}+3 \mathbf{a}_{2}$
$A-2 B+3 C=4 \mathbf{a}_{1}+5 \mathbf{a}_{2}+\mathbf{a}_{3}$
(1) $+(2) \rightarrow 3 \mathbf{A}+2 \mathbf{B}=3 \mathbf{a}_{1}+16 \mathbf{a}_{2}+2 \mathbf{a}_{3}$
(2) $\times 3+(3) \rightarrow 7 \mathbf{A}+\mathbf{B}=7 \mathbf{a}_{1}+14 \mathbf{a}_{2}+\mathbf{a}_{3}-$ (5)
$[(5) \times 2-(4)] \div 11 \rightarrow \mathbf{A}=\mathbf{a}_{1}+2 \mathbf{a}_{2}$
(5) $-(6) \times 7 \rightarrow \quad B=\mathbf{a}_{3}$
$(1)-(6)-(7) \rightarrow$
$\mathbf{C}=\mathbf{a}_{1}+\mathbf{a}_{2}+\mathbf{a}_{3}-$ (8)
1.3. $(\mathbf{A}+\mathbf{B}) \cdot(\mathbf{A}-\mathbf{B})=\mathbf{A} \cdot \mathbf{A}-\mathbf{A} \cdot \mathbf{B}+\mathbf{B} \cdot \mathbf{A}-\mathbf{B} \cdot \mathbf{B}=A^{2}-B^{2}$
$(A+B) \times(A-B)=A \times A-A \times B+B \times A-B \times B=2 B \times A$
For $\mathbf{A}=3 \mathbf{a}_{1}-5 \mathbf{a}_{2}+4 \mathbf{a}_{3}$ and $\mathbf{B}=\mathbf{a}_{1}+\mathbf{a}_{2}-2 \mathbf{a}_{3}$,
$\mathbf{A}+\mathbf{B}=4 \mathbf{a}_{1}-4 \mathbf{a}_{2}+2 \mathbf{a}_{3}, \mathbf{A}-\mathbf{B}=2 \mathbf{a}_{1}-6 \mathbf{a}_{2}+6 \mathbf{a}_{3}$,
$A^{2}=9+25+16=50$, and $B^{2}=1+1+4=6$
$(\mathbf{A}+\mathbf{B}) \cdot(\mathbf{A}-\mathbf{B})=8+24+12=44=A^{2}-B^{2}$

$$
\begin{aligned}
(\mathbf{A}+\mathbf{B}) \times(\mathbf{A}-\mathbf{B}) & =\left|\begin{array}{ccc}
\mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \\
4 & -4 & 2 \\
2 & -6 & 6
\end{array}\right|=-12 \mathbf{a}_{x}-20 \mathbf{a}_{y}-16 \mathbf{a}_{z} \\
& =2\left|\begin{array}{ccc}
\mathbf{a}_{x} & \mathbf{a}_{y} & \mathbf{a}_{z} \\
1 & 1 & -2 \\
3 & -5 & 4
\end{array}\right|=2 \mathbf{B} \times \mathbf{A}
\end{aligned}
$$

1.4. $\mathbf{B} \times \mathbf{C}=-4 \mathbf{a}_{x}+2 \mathbf{a}_{y}+8 \mathbf{a}_{z}, \mathbf{A} \times(\mathbf{B} \times \mathbf{C})=8 \mathbf{a}_{x}+16 \mathbf{a}_{y}$
$\mathbf{C} \times \mathbf{A}=-\mathbf{a}_{x}-2 \mathbf{a}_{y}+7 \mathbf{a}_{z}, \mathbf{B} \times(\mathbf{C} \times \mathbf{A})=-12 \mathbf{a}_{x}-8 \mathbf{a}_{y}-4 \mathbf{a}_{z}$
$\mathbf{A} \times \mathbf{B}=\mathbf{a}_{x}+2 \mathbf{a}_{y}+3 \mathbf{a}_{z}, \mathbf{C} \times(\mathbf{A} \times \mathbf{B})=4 \mathbf{a}_{x}-8 \mathbf{a}_{y}+4 \mathbf{a}_{z}$
$\mathbf{A} \times(\mathbf{B} \times \mathbf{C})+\mathbf{B} \times(\mathbf{C} \times \mathbf{A})+\mathbf{C} \times(\mathbf{A} \times \mathbf{B})=0$
In fact, this quantity is zero for any \mathbf{A}, \mathbf{B}, and \mathbf{C}.
1.5. Area $=\frac{1}{2} A B \sin \alpha=\frac{1}{2}|\mathbf{A} \times \mathbf{B}|$

For the points $(1,2,1),(-3,-4,5)$,
and ($2,-1,-3$),
$\mathbf{A}=4 \mathbf{a}_{x}+6 \mathbf{a}_{y}-4 \mathbf{a}_{z}$
$\mathbf{B}=5 \mathbf{a}_{x}+3 \mathbf{a}_{y}-8 \mathbf{a}_{z}$
$\mathbf{A} \times \mathbf{B}=-36 \mathbf{a}_{x}+12 \mathbf{a}_{y}-18 \mathbf{a}_{z}$

\therefore Area $=\frac{1}{2} \sqrt{(-36)^{2}+(12)^{2}+(-18)^{2}}=21$ units.
1.6. Area of the base $=|\mathbf{B} \times \mathbf{C}|$

Height of parallelepiped $=$ Projection
of \mathbf{A} onto the normal to the base
$=A \cdot \frac{\mathbf{B} \times \mathbf{C}}{|\mathbf{B} \times \mathbf{C}|}$

\therefore Volume of parallelepiped $=$ Area of base \times height $=\mathbf{A} \cdot \mathbf{B} \times \mathbf{C}$
For $\mathbf{A}=4 \mathbf{a}_{x}, \mathbf{B}=2 \mathbf{a}_{x}+\mathbf{a}_{y}+3 \mathbf{a}_{z}$, and $\mathbf{C}=2 \mathbf{a}_{y}+6 \mathbf{a}_{z}, \mathbf{A} \cdot \mathbf{B} \times \mathbf{C}=0$.
Hence, volume of the parallelepiped is zero. The three vectors lie in a plane.
1.7. The vector \mathbf{A} must be perpendicular to both $\left(-\mathbf{a}_{y}+2 \mathbf{a}_{z}\right)$ and $\left(\mathbf{a}_{x}-2 \mathbf{a}_{z}\right)$.

Hence $\mathbf{A}=C\left(-\mathbf{a}_{y}+2 \mathbf{a}_{z}\right) \times\left(\mathbf{a}_{x}-2 \mathbf{a}_{z}\right)=C\left(2 \mathbf{a}_{x}+2 \mathbf{a}_{y}+\mathbf{a}_{z}\right)$ where C is a constant. To find C, we note that $\mathbf{a}_{x} \times \mathbf{A}=\mathbf{a}_{x} \times C\left(2 \mathbf{a}_{x}+2 \mathbf{a}_{y}+\mathbf{a}_{z}\right)=2 \mathbf{a}_{z}-\mathbf{a}_{y}$
$\therefore C=1$ and $\mathrm{A}=2 \mathbf{a}_{x}+2 \mathbf{a}_{y}+\mathbf{a}_{z}$.
Verification: $\mathbf{a}_{y} \times \mathbf{A}=\mathbf{a}_{y} \times\left(2 \mathbf{a}_{x}+2 \mathbf{a}_{y}+\mathbf{a}_{z}\right)=\mathbf{a}_{x}-2 \mathbf{a}_{z}$.
1.8. Vector from $A(5,0,3)$ to $B(3,3,2)=-2 \mathbf{a}_{x}+3 \mathbf{a}_{y}-\mathbf{a}_{z}$

Vector from $C(6,2,4)$ to $D(3,3,6)=-3 \mathbf{a}_{x}+\mathbf{a}_{y}+2 \mathbf{a}_{z}$
Component of AB along $\mathrm{CD}=\mathbf{A B} \cdot \frac{\mathbf{C D}}{C D}=\frac{6+3-2}{\sqrt{9+1+4}}=1.8708$
1.9. Writing the equation for the plane as $\frac{x}{15}-\frac{y}{12}+\frac{z}{20}=1$, we find the intercepts on the x, y, and z-axes to be at $15,-12$, and 20 , respectively. Thus
$\mathbf{R}_{A B}=-15 \mathbf{a}_{x}-12 \mathbf{a}_{y}$
$\mathbf{R}_{A C}=-15 \mathbf{a}_{x}+20 \mathbf{a}_{z}$
$\mathbf{R}_{A C} \times \mathbf{R}_{A B}=240 \mathbf{a}_{x}-300 \mathbf{a}_{y}+180 \mathbf{a}_{z}$
$\mathbf{a}_{n}=\frac{\mathbf{R}_{A C} \times \mathbf{R}_{A B}}{\left|\mathbf{R}_{A C} \times \mathbf{R}_{A B}\right|}=\frac{4 \mathbf{a}_{x}-5 \mathbf{a}_{y}+3 \mathbf{a}_{z}}{5 \sqrt{2}}$

Distance from origin to the plane $=15 \mathbf{a}_{x} \cdot \mathbf{a}_{n}=6 \sqrt{2}$.
1.10. For $y=2 x, z=4 y$, we have $d y=2 d x, d z=4 d y=8 d x$.

$$
\begin{aligned}
\therefore d \mathbf{l} & =d x \mathbf{a}_{x}+d y \mathbf{a}_{y}+d z \mathbf{a}_{z}=d x \mathbf{a}_{x}+2 d x \mathbf{a}_{y}+8 d x \mathbf{a}_{z} \\
& =\left(\mathbf{a}_{x}+2 \mathbf{a}_{y}+8 \mathbf{a}_{z}\right) d x, \text { independent of the point. }
\end{aligned}
$$

1.11. For $x=y=z^{2}$, we have $d x=d y=2 z d z$.

At the point $(4,4,2), d x=d y=4 d z$

$$
\begin{aligned}
\therefore d \mathbf{l} & =d x \mathbf{a}_{x}+d y \mathbf{a}_{y}+d z \mathbf{a}_{z}=4 d z \mathbf{a}_{x}+4 d z \mathbf{a}_{y}+d z \mathbf{a}_{z} \\
& =\left(4 \mathbf{a}_{x}+4 \mathbf{a}_{y}+\mathbf{a}_{z}\right) d z
\end{aligned}
$$

1.12. Differential length vector having
projection $d y \mathbf{a}_{y}=d y \mathbf{a}_{y}$
Differential length vector having projection $d x \mathbf{a}_{x}$ is
$d x \mathbf{a}_{x}+d z \mathbf{a}_{z}=d x \mathbf{a}_{x}-\frac{1}{2} d x \mathbf{a}_{z}$
$=\left(\mathbf{a}_{x}-\frac{1}{2} \mathbf{a}_{z}\right) d x$,

since for $x+2 z=2, d z=-\frac{1}{2} d x$, independent of the point.
$\therefore d \mathbf{S}=\left(\mathbf{a}_{x}-\frac{1}{2} \mathbf{a}_{z}\right) d x \times d y \mathbf{a}_{y}=\left(\frac{1}{2} \mathbf{a}_{x}+\mathbf{a}_{z}\right) d x d y$.
1.13. One vector tangential to the surface is $d z \mathbf{a}_{z}$. Another tangential vector is given by

$$
\begin{aligned}
d \mathbf{l} & =d x \mathbf{a}_{x}+d y \mathbf{a}_{y} \\
& =d x \mathbf{a}_{x}+2 x d x \mathbf{a}_{y} \\
& =\left(\mathbf{a}_{x}+4 \mathbf{a}_{y}\right) d x
\end{aligned}
$$

\therefore Vector normal to the plane $=\left(\mathbf{a}_{x}+4 \mathbf{a}_{y}\right) d x \times d z \mathbf{a}_{z}$

$$
=\left(4 \mathbf{a}_{x}-\mathbf{a}_{y}\right) d x d z
$$

Unit vector normal to the plane $=\frac{4 \mathbf{a}_{x}-\mathbf{a}_{y}}{\sqrt{17}}$.
1.14. Denoting $h(x, y)$ to be the height field, we have

$$
x^{2}+y^{2}+h^{2}=4, x^{2}+y^{2} \leq 4
$$

$$
\text { or, } h=\sqrt{4-x^{2}-y^{2}}, x^{2}+y^{2} \leq 4 .
$$

1.15. The number field is $x+y+z$.
\therefore Constant magnitude surfaces are the planes $x+y+z=$ constant.

1.16. $\mathbf{d}(x, y, z)=x \mathbf{a}_{x}+y \mathbf{a}_{y}+z \mathbf{a}_{z}$

Constant magnitude surfaces are $x^{2}+y^{2}+z^{2}=$ constant, and hence are spherical surfaces centered at the corner. Direction lines are radial lines emanating from the corner.
1.17. $\mathbf{v}=-r \omega \sin \phi \mathbf{a}_{x}+r \omega \cos \phi \mathbf{a}_{y}$

$$
=\omega\left(-y \mathbf{a}_{x}+x \mathbf{a}_{y}\right)
$$

1.18. $f(z, t)=10 \cos \left(2 \pi \times 10^{7} t-0.1 \pi z\right)$

$f(z, t)$ represents a traveling wave progressing with time in the positive z-direction.
1.19. $f(z, t)=10 \cos \left(2 \pi \times 10^{7} t+0.1 \pi z\right)$

$f(z, t)$ represents a traveling wave progressing with time in the negative z-direction.
1.20. $f(z, t)=10 \cos 2 \pi \times 10^{7} t \cos 0.1 \pi z$

$f(z, t)$ represents a standing wave.
1.21. (a) The two components are in phase; hence, linear polarization.
(b) The two components are perpendicular in direction, differ in phase by 90° and equal in amplitude; hence, circular polarization.
(c) The two components are perpendicular in direction, differ in phase by 90° but unequal in amplitude; hence elliptical polarization.
1.22. \mathbf{F}_{1} and \mathbf{F}_{2} differ in phase by 90°.
$\left|\mathbf{F}_{1}\right|=\sqrt{3+1} \cos \omega t=2 \cos \omega t ;\left|\mathbf{F}_{2}\right|=\sqrt{\frac{1}{4}+\frac{3}{4}+3} \sin \omega t=2 \sin \omega t$.
$\therefore \mathbf{F}_{1}$ and \mathbf{F}_{2} are equal in amplitude.
$\mathbf{F}_{1} \cdot \mathbf{F}_{2}=-\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}=0 . \quad \therefore \mathbf{F}_{1}$ is perpendicular to \mathbf{F}_{2}.
Thus $\mathbf{F}_{1}+\mathbf{F}_{2}$ is circularly polarized.
1.23.

The polarization is elliptical with major axis in the y-direction, minor axis in the x-direction, and eccentricity equal to $\sqrt{2}$.
1.24. $10 \cos \left(\omega t-30^{\circ}\right)+10 \cos \left(\omega t+210^{\circ}\right)$
$10 e^{\downarrow-j 30^{\circ}}+10 e^{\downarrow}+\frac{\downarrow}{j 210^{\circ}}=10 e^{-j 90^{\circ}}$
\therefore The sum is $10 \cos \left(\omega t-90^{\circ}\right)=10 \sin \omega t$.

1.26. Replacing $\frac{d i}{d t}$ by $j 10^{6} \bar{I}, i$ by \bar{I}, and $13 \cos 10^{6} t$ by $13 e^{j 0^{\circ}}$, we have $5 \times 10^{-6} \times j 10^{6} \bar{I}+12 \bar{I}=13 e^{j 0^{\circ}}$ or, $(12+j 5) \bar{I}=13, \bar{I}=\frac{13}{12+j 5}=\frac{13}{13 e^{j 22.62^{\circ}}}=1 e^{-j 22.62^{\circ}}$

Thus $i=1 \cos \left(10^{6} t-22.62^{\circ}\right)=1 \cos \left(10^{6} t-0.126 \pi\right)$
1.27. From the construction shown,

$$
\begin{aligned}
& \frac{Q^{2}}{4 \pi \varepsilon_{0} \cdot 2 l^{2}} / m g=\tan 45^{\circ}=1 \\
& \text { or, } Q=\sqrt{8 \pi \varepsilon_{0} l^{2} m g}
\end{aligned}
$$

1.28. (a) At the point $(0,0,100)$,

$$
\begin{aligned}
\mathbf{E} & =\frac{Q}{4 \pi \varepsilon_{0}(99)^{2}} \mathbf{a}_{z}+\frac{-Q}{4 \pi \varepsilon_{0}(101)^{2}} \mathbf{a}_{z} \\
& =\frac{Q}{4 \pi \varepsilon_{0}} \frac{101^{2}-99^{2}}{99^{2} \times 101^{2}} \mathbf{a}_{z} \\
& =\frac{Q}{4 \pi \varepsilon_{0}} \frac{(100+1)^{2}-(100-1)^{2}}{(100-1)^{2} \times(100+1)^{2}} \mathbf{a}_{z}=\frac{Q}{4 \pi \varepsilon_{0}} \frac{400}{\left(100^{2}-1\right)^{2}} \mathbf{a}_{z} \\
& \approx \frac{Q}{4 \pi \varepsilon_{0}} \frac{400}{100^{4}} \mathbf{a}_{z}=\frac{Q}{100^{3} \pi \varepsilon_{0}} \mathbf{a}_{z}
\end{aligned}
$$

(b) At the point $(100,0,0)$

$$
\begin{aligned}
\mathbf{E} & =-\frac{2 Q}{4 \pi \varepsilon_{0}\left(100^{2}+1^{2}\right)^{3 / 2}} \mathbf{a}_{z} \\
& \approx-\frac{Q}{2 \pi \varepsilon_{0}\left(100^{3}\right)} \mathbf{a}_{z}
\end{aligned}
$$

