Solution Manual for

Fundamentals of Electromagnetics for Electrical and Computer Engineering

Nannapaneni Narayana Rao

Edward C. Jordan Professor Emeritus of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign, USA

Distinguished Amrita Professor of Engineering

Amrita Vishwa Vidyapeetham (Amrita University), India

All rights reserved

Pearson Prentice Hall

Upper Saddle River, New Jersey 07458

CONTENTS

Chapter 1	1
Chapter 2	15
Chapter 3	29
Chapter 4	41
Chapter 5	59
Chapter 6	82
Chapter 7	104
Chapter 8	
Chapter 9	153
Chapter 10	170
Appendix A	183
Appendix B	187

CHAPTER 1

1.1. (a) Total distance =
$$1 + \frac{1}{2} + \frac{1}{4} + \dots = \frac{1}{1 - \frac{1}{2}} = 2 \text{ m}$$

(b) Distance north =
$$1 - \frac{1}{4} + \frac{1}{16} - \dots = \frac{1}{1 + \frac{1}{4}} = 0.8 \text{ m}$$

Distance east =
$$\frac{1}{2} - \frac{1}{8} + \frac{1}{32} - \dots = \frac{1}{2} \left(1 - \frac{1}{4} + \frac{1}{16} - \dots \right) = 0.4 \text{ m}$$

 \therefore Final position is (0.8, 0.4)

(c) Straight line distance =
$$\sqrt{(0.8)^2 + (0.4)^2}$$
 = 0.8944 m

1.2.
$$A + B + C = 2a_1 + 3a_2 + 2a_3$$
 — (1)

$$2A + B - C = a_1 + 3a_2$$
 — (2)

$$A - 2B + 3C = 4a_1 + 5a_2 + a_3$$
 — (3)

$$(1) + (2) \rightarrow 3A + 2B = 3a_1 + 16a_2 + 2a_3 \quad --- (4)$$

$$(2) \times 3 + (3) \rightarrow 7\mathbf{A} + \mathbf{B} = 7\mathbf{a}_1 + 14\mathbf{a}_2 + \mathbf{a}_3 \quad --- (5)$$

$$[(5) \times 2 - (4)] \div 11 \rightarrow \mathbf{A} = \mathbf{a}_1 + 2\mathbf{a}_2 \qquad --(6)$$

$$(5) - (6) \times 7 \longrightarrow \mathbf{B} = \mathbf{a}_3 \qquad --(7)$$

$$(1) - (6) - (7) \rightarrow C = a_1 + a_2 + a_3 - (8)$$

1.3.
$$(\mathbf{A} + \mathbf{B}) \cdot (\mathbf{A} - \mathbf{B}) = \mathbf{A} \cdot \mathbf{A} - \mathbf{A} \cdot \mathbf{B} + \mathbf{B} \cdot \mathbf{A} - \mathbf{B} \cdot \mathbf{B} = A^2 - B^2$$

$$(\mathbf{A} + \mathbf{B}) \times (\mathbf{A} - \mathbf{B}) = \mathbf{A} \times \mathbf{A} - \mathbf{A} \times \mathbf{B} + \mathbf{B} \times \mathbf{A} - \mathbf{B} \times \mathbf{B} = 2\mathbf{B} \times \mathbf{A}$$

For
$$A = 3a_1 - 5a_2 + 4a_3$$
 and $B = a_1 + a_2 - 2a_3$,

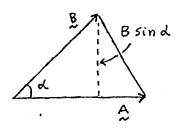
$$A + B = 4a_1 - 4a_2 + 2a_3$$
, $A - B = 2a_1 - 6a_2 + 6a_3$,

$$A^2 = 9 + 25 + 16 = 50$$
, and $B^2 = 1 + 1 + 4 = 6$

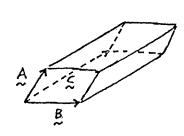
$$(\mathbf{A} + \mathbf{B}) \cdot (\mathbf{A} - \mathbf{B}) = 8 + 24 + 12 = 44 = A^2 - B^2$$

$$(\mathbf{A} + \mathbf{B}) \times (\mathbf{A} - \mathbf{B}) = \begin{vmatrix} \mathbf{a}_x & \mathbf{a}_y & \mathbf{a}_z \\ 4 & -4 & 2 \\ 2 & -6 & 6 \end{vmatrix} = -12\mathbf{a}_x - 20\mathbf{a}_y - 16\mathbf{a}_z$$
$$= 2 \begin{vmatrix} \mathbf{a}_x & \mathbf{a}_y & \mathbf{a}_z \\ 1 & 1 & -2 \\ 3 & -5 & 4 \end{vmatrix} = 2\mathbf{B} \times \mathbf{A}$$

- 1.4. $\mathbf{B} \times \mathbf{C} = -4\mathbf{a}_x + 2\mathbf{a}_y + 8\mathbf{a}_z$, $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = 8\mathbf{a}_x + 16\mathbf{a}_y$ $\mathbf{C} \times \mathbf{A} = -\mathbf{a}_x - 2\mathbf{a}_y + 7\mathbf{a}_z$, $\mathbf{B} \times (\mathbf{C} \times \mathbf{A}) = -12\mathbf{a}_x - 8\mathbf{a}_y - 4\mathbf{a}_z$ $\mathbf{A} \times \mathbf{B} = \mathbf{a}_x + 2\mathbf{a}_y + 3\mathbf{a}_z$, $\mathbf{C} \times (\mathbf{A} \times \mathbf{B}) = 4\mathbf{a}_x - 8\mathbf{a}_y + 4\mathbf{a}_z$ $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) + \mathbf{B} \times (\mathbf{C} \times \mathbf{A}) + \mathbf{C} \times (\mathbf{A} \times \mathbf{B}) = 0$ In fact, this quantity is zero for any \mathbf{A} , \mathbf{B} , and \mathbf{C} .
- 1.5. Area = $\frac{1}{2}AB \sin \alpha = \frac{1}{2}|\mathbf{A} \times \mathbf{B}|$ For the points (1, 2, 1), (-3, -4, 5),and (2, -1, -3), $\mathbf{A} = 4\mathbf{a}_x + 6\mathbf{a}_y - 4\mathbf{a}_z$ $\mathbf{B} = 5\mathbf{a}_x + 3\mathbf{a}_y - 8\mathbf{a}_z$ $\mathbf{A} \times \mathbf{B} = -36\mathbf{a}_x + 12\mathbf{a}_y - 18\mathbf{a}_z$ $\therefore \text{ Area} = \frac{1}{2}\sqrt{(-36)^2 + (12)^2 + (-18)^2} = 21 \text{ units.}$



1.6. Area of the base = $|\mathbf{B} \times \mathbf{C}|$ Height of parallelepiped = Projection of \mathbf{A} onto the normal to the base = $\mathbf{A} \cdot \frac{\mathbf{B} \times \mathbf{C}}{|\mathbf{B} \times \mathbf{C}|}$



 \therefore Volume of parallelepiped = Area of base \times height = $\mathbf{A} \cdot \mathbf{B} \times \mathbf{C}$

For
$$\mathbf{A} = 4\mathbf{a}_x$$
, $\mathbf{B} = 2\mathbf{a}_x + \mathbf{a}_y + 3\mathbf{a}_z$, and $\mathbf{C} = 2\mathbf{a}_y + 6\mathbf{a}_z$, $\mathbf{A} \cdot \mathbf{B} \times \mathbf{C} = 0$.

Hence, volume of the parallelepiped is zero. The three vectors lie in a plane.

1.7. The vector **A** must be perpendicular to both $(-\mathbf{a}_y + 2\mathbf{a}_z)$ and $(\mathbf{a}_x - 2\mathbf{a}_z)$.

Hence $\mathbf{A} = C(-\mathbf{a}_y + 2\mathbf{a}_z) \times (\mathbf{a}_x - 2\mathbf{a}_z) = C(2\mathbf{a}_x + 2\mathbf{a}_y + \mathbf{a}_z)$ where C is a constant. To find C,

we note that $\mathbf{a}_x \times \mathbf{A} = \mathbf{a}_x \times C(2\mathbf{a}_x + 2\mathbf{a}_y + \mathbf{a}_z) = 2\mathbf{a}_z - \mathbf{a}_y$

$$\therefore$$
 $C = 1$ and $\mathbf{A} = 2\mathbf{a}_x + 2\mathbf{a}_y + \mathbf{a}_z$.

Verification: $\mathbf{a}_y \times \mathbf{A} = \mathbf{a}_y \times (2\mathbf{a}_x + 2\mathbf{a}_y + \mathbf{a}_z) = \mathbf{a}_x - 2\mathbf{a}_z$.

1.8. Vector from A(5, 0, 3) to $B(3, 3, 2) = -2\mathbf{a}_x + 3\mathbf{a}_y - \mathbf{a}_z$

Vector from C(6, 2, 4) to $D(3, 3, 6) = -3\mathbf{a}_x + \mathbf{a}_y + 2\mathbf{a}_z$

Component of **AB** along **CD** = **AB** • $\frac{\textbf{CD}}{CD} = \frac{6+3-2}{\sqrt{9+1+4}} = 1.8708$

1.9. Writing the equation for the plane as $\frac{x}{15} - \frac{y}{12} + \frac{z}{20} = 1$, we find the intercepts on the x, y,

and z-axes to be at 15, -12, and 20, respectively. Thus

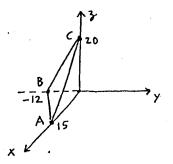
$$\mathbf{R}_{AB} = -15\mathbf{a}_x - 12\mathbf{a}_y$$

$$\mathbf{R}_{AC} = -15\mathbf{a}_x + 20\mathbf{a}_z$$

 $\mathbf{R}_{AC} \times \mathbf{R}_{AB} = 240\mathbf{a}_x - 300\mathbf{a}_y + 180\mathbf{a}_z$

$$\mathbf{a}_{n} = \frac{\mathbf{R}_{AC} \times \mathbf{R}_{AB}}{\left|\mathbf{R}_{AC} \times \mathbf{R}_{AB}\right|} = \frac{4\mathbf{a}_{x} - 5\mathbf{a}_{y} + 3\mathbf{a}_{z}}{5\sqrt{2}}$$

Distance from origin to the plane = $15\mathbf{a}_x \cdot \mathbf{a}_n = 6\sqrt{2}$.



1.10. For y = 2x, z = 4y, we have dy = 2 dx, dz = 4 dy = 8 dx.

 $\therefore d\mathbf{l} = dx \, \mathbf{a}_x + dy \, \mathbf{a}_y + dz \, \mathbf{a}_z = dx \, \mathbf{a}_x + 2 \, dx \, \mathbf{a}_y + 8 \, dx \, \mathbf{a}_z$

= $(\mathbf{a}_x + 2\mathbf{a}_y + 8\mathbf{a}_z) dx$, independent of the point.

1.11. For $x = y = z^2$, we have dx = dy = 2z dz.

At the point (4, 4, 2), dx = dy = 4 dz

 $\therefore d\mathbf{l} = dx \, \mathbf{a}_x + dy \, \mathbf{a}_y + dz \, \mathbf{a}_z = 4 \, dz \, \mathbf{a}_x + 4 \, dz \, \mathbf{a}_y + dz \, \mathbf{a}_z$ $= (4\mathbf{a}_x + 4\mathbf{a}_y + \mathbf{a}_z) \, dz$

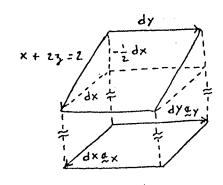
1.12. Differential length vector having

projection
$$dy \mathbf{a}_y = dy \mathbf{a}_y$$

projection $dx \mathbf{a}_x$ is

$$dx \mathbf{a}_x + dz \mathbf{a}_z = dx \mathbf{a}_x - \frac{1}{2} dx \mathbf{a}_z$$

$$= \left(\mathbf{a}_x - \frac{1}{2}\mathbf{a}_z\right) dx,$$



since for x + 2z = 2, $dz = -\frac{1}{2} dx$, independent of the point.

$$\therefore d\mathbf{S} = \left(\mathbf{a}_x - \frac{1}{2}\mathbf{a}_z\right) dx \times dy \,\mathbf{a}_y = \left(\frac{1}{2}\mathbf{a}_x + \mathbf{a}_z\right) dx \,dy.$$

1.13. One vector tangential to the

surface is
$$dz$$
 \mathbf{a}_z . Another

tangential vector is given by

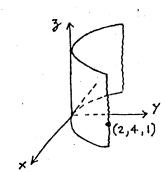
$$d\mathbf{l} = dx \, \mathbf{a}_x + dy \, \mathbf{a}_y$$

$$= dx \mathbf{a}_x + 2x dx \mathbf{a}_y$$

$$= (\mathbf{a}_x + 4\mathbf{a}_y) \; dx$$

$$= (4\mathbf{a}_x - \mathbf{a}_y) \, dx \, dz$$

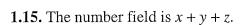
Unit vector normal to the plane =
$$\frac{4\mathbf{a}_x - \mathbf{a}_y}{\sqrt{17}}$$
.



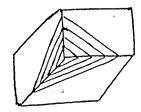
1.14. Denoting h(x, y) to be the height field, we have

$$x^{2} + y^{2} + h^{2} = 4$$
, $x^{2} + y^{2} \le 4$

or,
$$h = \sqrt{4 - x^2 - y^2}$$
, $x^2 + y^2 \le 4$.



.. Constant magnitude surfaces are the planes x + y + z = constant.

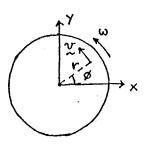


1.16. $\mathbf{d}(x, y, z) = x\mathbf{a}_x + y\mathbf{a}_y + z\mathbf{a}_z$

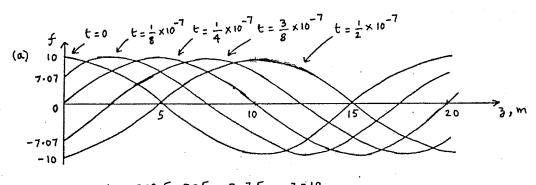
Constant magnitude surfaces are $x^2 + y^2 + z^2 = \text{constant}$, and hence are spherical surfaces centered at the corner. Direction lines are radial lines emanating from the corner.

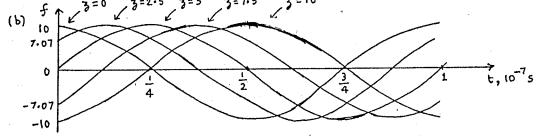
1.17.
$$\mathbf{v} = -r\omega \sin \phi \mathbf{a}_x + r\omega \cos \phi \mathbf{a}_y$$

= $\omega(-y\mathbf{a}_x + x\mathbf{a}_y)$



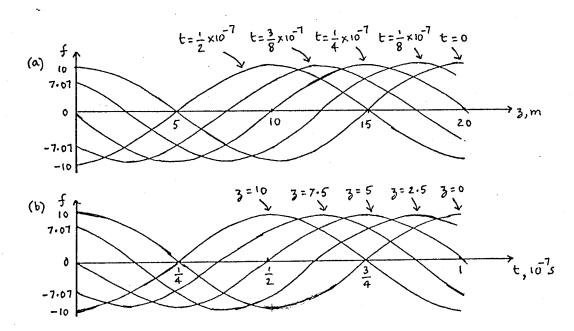
1.18. $f(z, t) = 10 \cos(2\pi \times 10^7 t - 0.1 \pi z)$





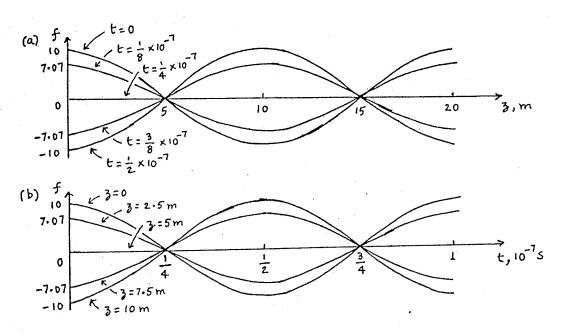
f(z, t) represents a traveling wave progressing with time in the positive z-direction.

1.19. $f(z, t) = 10\cos(2\pi \times 10^7 t + 0.1 \pi z)$



f(z, t) represents a traveling wave progressing with time in the negative z-direction.

1.20. $f(z, t) = 10\cos 2\pi \times 10^7 t \cos 0.1 \pi z$



f(z, t) represents a standing wave.

- 1.21. (a) The two components are in phase; hence, linear polarization.
 - (b) The two components are perpendicular in direction, differ in phase by 90° and equal in amplitude; hence, circular polarization.
 - (c) The two components are perpendicular in direction, differ in phase by 90° but unequal in amplitude; hence elliptical polarization.
- **1.22.** \mathbf{F}_1 and \mathbf{F}_2 differ in phase by 90°.

$$\left|\mathbf{F}_{1}\right| = \sqrt{3+1}\cos\omega t = 2\cos\omega t; \left|\mathbf{F}_{2}\right| = \sqrt{\frac{1}{4} + \frac{3}{4} + 3}\sin\omega t = 2\sin\omega t.$$

 \therefore \mathbf{F}_1 and \mathbf{F}_2 are equal in amplitude.

$$\mathbf{F}_1 \cdot \mathbf{F}_2 = -\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = 0$$
. \therefore \mathbf{F}_1 is perpendicular to \mathbf{F}_2 .

Thus $\mathbf{F}_1 + \mathbf{F}_2$ is circularly polarized.

1.23.

The polarization is elliptical with major axis in the y-direction, minor axis in the x-direction, and eccentricity equal to $\sqrt{2}$.

1.24.
$$10 \cos (\omega t - 30^{\circ}) + 10 \cos (\omega t + 210^{\circ})$$

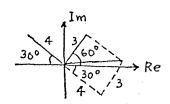
 \therefore The sum is $10 \cos(\omega t - 90^\circ) = 10 \sin \omega t$.

1.25.
$$3\cos(\omega t + 60^\circ) - 4\cos(\omega t + 150^\circ)$$

$$3 e^{j60^{\circ}} - 4 e^{j150^{\circ}}$$

$$= 5 e^{j(60^{\circ}-53.13^{\circ})} = 5 e^{j6.87^{\circ}}$$

$$\rightarrow 5 \cos(\omega t + 6.87^{\circ}).$$



1.26. Replacing $\frac{di}{dt}$ by $j10^6\overline{I}$, i by \overline{I} , and 13 cos 10^6t by $13e^{j0^\circ}$, we have

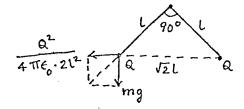
$$5 \times 10^{-6} \times j10^{6} \overline{I} + 12 \overline{I} = 13e^{j0^{\circ}}$$

or,
$$(12+j5)\overline{I} = 13$$
, $\overline{I} = \frac{13}{12+j5} = \frac{13}{13e^{j22.62^{\circ}}} = 1e^{-j22.62^{\circ}}$

Thus $i = 1 \cos (10^6 t - 22.62^\circ) = 1 \cos (10^6 t - 0.126\pi)$

1.27. From the construction shown,

$$\frac{Q^2}{4\pi\varepsilon_0 \cdot 2l^2} / mg = \tan 45^\circ = 1$$
or, $Q = \sqrt{8\pi\varepsilon_0 l^2 mg}$



1.28. (a) At the point (0, 0, 100),

$$\mathbf{E} = \frac{Q}{4\pi\varepsilon_0 (99)^2} \mathbf{a}_z + \frac{-Q}{4\pi\varepsilon_0 (101)^2} \mathbf{a}_z$$

$$= \frac{Q}{4\pi\varepsilon_0} \frac{101^2 - 99^2}{99^2 \times 101^2} \mathbf{a}_z$$

$$= \frac{Q}{4\pi\varepsilon_0} \frac{(100+1)^2 - (100-1)^2}{(100-1)^2 \times (100+1)^2} \mathbf{a}_z = \frac{Q}{4\pi\varepsilon_0} \frac{400}{(100^2-1)^2} \mathbf{a}_z$$

$$\approx \frac{Q}{4\pi\varepsilon_0} \frac{400}{100^4} \mathbf{a}_z = \frac{Q}{100^3 \pi\varepsilon_0} \mathbf{a}_z$$

(b) At the point (100, 0, 0)

$$\mathbf{E} = -\frac{2Q}{4\pi\varepsilon_0 (100^2 + 1^2)^{3/2}} \mathbf{a}_z$$
$$\approx -\frac{Q}{2\pi\varepsilon_0 (100^3)} \mathbf{a}_z$$

