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Chapter 2

Section 2.1

(b) All solutions seem to converge to an increasing function as t — co.

(c) The integrating factor is pu(t) = €*. Then

eBty/ + 3€3ty — 63t(t 4 6727&) — (63ty>/ — teSt + et

We conclude that y is asymptotic to ¢/3 — 1/9 as t — oo.
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(b) All slopes eventually become positive, so all solutions will eventually increase without
bound.

(c) The integrating factor is u(t) = e *. Then
672ty/ o 267%3/ — 672t<t262t) — <€72ty)/ — t2

t3
== e_Qty:/tht: —+c

3

— _ﬁ% 2t
Y = 36 + ce”.

We conclude that y increases exponentially as ¢ — oo.

(b) All solutions appear to converge to the function y(¢) = 1.

¢) The integrating factor is u(t) = et. Therefore
(c) grating 1 :

ey +ely=t+e = (cy) =t+¢
2

t
= ety:/(t+et)dt:§—|—et+c

t2
- y = 56_t +1+4ce "

Therefore, we conclude that y — 1 as t — oo.



\\\\\\\\\\ﬁ%\\\\\\\\

S

\\\\\\\\\\

o1
/ A,,,,

//////////

/////////////////
///////// RO

\\\\\\\\\\%%\\v\w,
o P A7 T ]
P AT

AN

7T

S \\\\\\\j A //./7/7// ~

7 7 AR

> > ] ; / NONCNE

T e e e e S

N N 4 \V/_\ ¢\%
S /J.I///// 1 ,A \\\\\\\ -
GGGQY/H%\\V\\\\\\VV

(b) The solutions eventually become oscillatory.

t. Therefore,

(
3t cos(2t

(t)

ty' +y = 3t cos

(¢) The integrating factor is u

= 3t cos(2t)

) = (ty)

2t

tsin(2t) + ¢

3
2

3
4

cos(2t) +

dt =

)

/

= ty

C
t.

We conclude that y is asymptotic to (3sin2t)/2 as t — oo.

3sin 2t n
2

+

3 cos 2t
4t
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(b) All slopes eventually become positive so all solutions eventually increase without bound.

e~2. Therefore,

(¢) The integrating factor is p(t)

3e~t

=3¢t = (e ?y)

/3e_t dt

= y= —3e! + ce?.

e~y — 2072y

—3e " +c

Zty —

— €

We conclude that y increases exponentially as ¢ — oc.
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2y + 2ty = tsin(t) = (t%y)

(b) For ¢t > 0, all solutions seem to eventually converge to the function y = 0.
We conclude that y — 0 as t — oo.

(c¢) The integrating factor is pu(t)

(b) For ¢t > 0, all solutions seem to eventually converge to the function y = 0.



Therefore, using the techniques shown above, we

t2
e,
. We conclude that y — 0 as t — oo.

(c) The integrating factor is p(t)

_ 42
t?e ¥ 4 ce

—¢2

see that y(t)
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(b) For ¢t > 0, all solutions seem to eventually converge to the function y = 0.

(c) The integrating factor is pu(t) = (1 + ¢*)?. Then

1
1+t

(L+ )% +4t(1 + %)y =

1
dt
1+¢2

/

(tan™'(2) +¢) /(1 + )2

= ((1+t")%)

:}y

We conclude that y — 0 as t — oo.
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(b) All slopes eventually become positive. Therefore, all solutions will increase without
bound.

(c) The integrating factor is pu(t) = e*/2. Therefore,
2et/2yl + et/Qy — 3tet/? — Qet/2y = /3tet/2 dt = 6tet’? — 12e"? + ¢
— y=3t—6+ce V2
We conclude that y — 3t — 6 as t — oo.

10.

(b) For y > 0, the slopes are all positive, and, therefore, the corresponding solutions increase
without bound. For y < 0 almost all solutions have negative slope and therefore decrease

without bound.

(c¢) By dividing the equation by ¢, we see that the integrating factor is p(t) = 1/t. Therefore,
Y/t —y/tt=tet = (y/t) =tet
== % = /te_tdt: —tet—e T+
= y = —t2e7t —te7t + ct.

We conclude that y — c0if ¢ >0,y - —c0if c< 0 and y — 0 if ¢ = 0.

11.
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(b) The solution appears to be oscillatory.

et. Therefore,

(c) The integrating factor is pu(t)

= 5e' sin(2t)

)/

—2e

ey +e'y = 5e'sin(2t) = (e'y

—2cos(2t) + sin(2t) + ce".

sin(2t) +¢ = y=

cos(2t) + €'

t

/5et sin(2t) dt =

— ¢y

— 2cos(2t) as t — 0.

)

We conclude that y — sin(2t

12.
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all solutions increase without bound.
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(b) All slopes are eventually positive. Therefore

et/. Therefore,
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We conclude that y is asymptotic to 3t2 — 12t + 24 as t — oo.



13. The integrating factor is p(t) = e~*. Therefore,
e ly) = 2te! = y=c¢" [ 2te’ dt = 2te* — 2e** + ce'.
(e™y) y

The initial condition y(0) = 1 implies —2 + ¢ = 1. Therefore, c = 3 and y = 3e’ +2(t — 1)e*
14. The integrating factor is u(t) = e?*. Therefore,

t2
<€2ty)/ :t :> y — th/tdt — Eeizt + ce*2t

The initial condition y(1) = 0 implies e */2 + ce™* = (0. Therefore, ¢ = —1/2, and
y=(t>—1)e /2

15. Dividing the equation by ¢, we see that the integrating factor is u(t) = t?. Therefore,

2 \/ 3 2 -2 3 2 t? l 1 c

The initial condition y(1) = 1/2 implies ¢ = 1/12, and y = (3t* — 4¢3 + 6¢2 + 1) /122
16. The integrating factor is u(t) = t*. Therefore,

(t’y) = cos(t) = y =12 / cos(t) dt = t~*(sin(t) + c).

The initial condition y(m) = 0 implies ¢ = 0 and y = (sint)/t?
17. The integrating factor is u(t) = e~2. Therefore,

(ey) =1 = y= eZt/ldt =e*(t +c).

The initial condition y(0) = 2 implies ¢ = 2 and y = (¢ + 2)e?.
18. After dividing by ¢, we see that the integrating factor is u(t) = 2. Therefore,

t*y) =1 = y=1t"2 /tsin(t) dt = t~2(sin(t) — t cos(t) + ¢).

The initial condition y(7/2) = 1 implies ¢ = (72/4)—1 and y = t~2[(7?/4) — 1 —t cost+sint].
19. After dividing by 3, we see that the integrating factor is u(t) = t*. Therefore,

<t4y)/ o te_t = Yy = t—4/t€—t dt — t—4(_t6—t _ e—t _|_ C).

The initial condition y(—1) = 0 implies c =0 and y = —(1 +t)e”?/t*, t#0
20. After dividing by ¢, we see that the integrating factor is u(t) = te'. Therefore,

(tely) =te! = y=t"'e! /tet dt =t"tel(te! —e'+c) =t (t —1+ce™).

The initial condition y(In2) = 1 implies c=2 and y = (t — 1 +2e7%)/t, t#0
21.
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The solutions appear to diverge from an oscillatory solution. It appears that ag ~ —1.
For a > —1, the solutions increase without bound. For a < —1, the solutions decrease
without bound.

(b) The integrating factor is p(t) = e~/2. From this, we conclude that the general solution
is y(t) = (8sin(t) — 4 cos(t))/5 4 ce'/?. The solution will be sinusoidal as long as ¢ = 0.
The initial condition for the sinusoidal behavior is y(0) = (8sin(0) —4 cos(0))/5 = —4/5.
Therefore, ag = —4/5.

(c) y oscillates for a = ay

22.
(a)
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All solutions eventually increase or decrease without bound. The value ay appears to be
approximately ag = —3.

(b) The integrating factor is u(t) = e¥/2, and the general solution is y(t) = —3e*/? 4 ce/2.
The initial condition y(0) = a implies y = —3e'/3 + (a + 3)e'/2. The solution will behave
like (a + 3)e/2. Therefore, ag = —3.



e~2t/3_ Therefore,
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(¢) y — —oo for a = agy

23.

[(2+ a(3m +4))e?/? —2e77/2] /(31 +4). The solution will eventually

behave like (2 + a(3m + 4))e?/3 /(31 + 4). Therefore, ag = —2/(37 + 4).

Solutions eventually increase or decrease without bound, depending on the initial value

ap. It appears that ag ~ —1/8.
(b) Dividing the equation by 3, we see that the integrating factor is u(t)

=N S

R I

= 3

28 .

= £

p—

S o

E T

+ D
)
~ O ~—

It appears that ag ~ .4. As t — 0, solutions increase without bound if y > ag and

decrease without bound if y < ay.



1/e.

te'. The general solution is y = te~*+ce~"/t. The initial
a implies y = te™" + (ea — 1)e~*/t. As t — 0, the solution will behave

we see that ag

like (ea — 1)e~*/t. From this,

(b) The integrating factor is p(t)
condition y(1)

(c) y—0ast—0fora=ag

25.

y(®)
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It appears that ap ~ .4. That is, as t — 0, for y(—7n/2) > ao, solutions will increase

without bound, while solutions will decrease without bound for y(—m/2) < ay.

1, solutions will increase without bound if

a > 4/7? and decrease without bound if a < 4/7%. Therefore, ag = 4/7>.

(b) After dividing by ¢, we see that the integrating factor is ¢*, and the solution is y
—cost/t? + w2a/4t?. Since lim, g cos(t)

(1 —cos(t))/t* = 1/2 as t — 0.

4/m2 y =

(c) For ag

26.
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It appears that ag &~ 2. For y(1) > ag, the solution will increase without bound as t — 0,
while the solution will decrease without bound if y(t) < ao.

(b) After dividing by sin(¢), we see that the integrating factor is u(t) = sin(¢). As a result,
we see that the solution is given by y = (e' + ¢)sin(¢). Applying our initial condition,
we see that our solution is y = (¢! — e 4 asinl)/sint. The solution will increase if
1—e+asinl > 0 and decrease if 1 — e + asinl < 0. Therefore, we conclude that
ap=(e—1)/sin1

(¢) If ag = (e — 1) sin(1), then y = (' — 1)/sin(t). Ast — 0,y — 1.

27. The integrating factor is u(t) = e*/2. Therefore, the general solution is y(t) = [4 cos(t) +
8sin(t)]/5 + ce~'/2. Using our initial condition, we have y(t) = [4 cos(t) + 8sin(t) — 9¢/?]/5.
Differentiating, we have

y' = [—4sin(t) + 8cos(t) + 4,5@—t/2]/5
y' = [~4cos(t) — 8sin(t) — 2.25€2] /5.

Setting ¢y’ = 0, the first solution is t; = 1.3643, which gives the location of the first stationary
point. Since y”(t;) < 0, the first stationary point is a local maximum. The coordinates of
the point are (1.3643,.82008).

28. The integrating factor is u(t) = e?*/3. The general solution of the differential equation is
y(t) = (21 — 6t)/8 + ce~2"/3. Using the initial condition, we have y(t) = (21 — 6t)/8 + (yo —
21/8)e2t/3. Therefore, y/(t) = —3/4 — (2yo —21/4)e2/3/3. Setting 3/(t) = 0, the solution is
t1 = 21n[(21 — 8yp)/9]. Substituting into the solution, the respective value at the stationary
point is y(t;) = % + %ln?) — gln(Ql — 8yp). Setting this result equal to zero, we obtain the
required initial value yo = (21 — 9¢*/3)/8 = —1.643.

29.

(a) The integrating factor is p(t) = e*/4. The general solution is
y(t) = 12 + [8 cos(2t) + 64sin(2t)] /65 + ce /™.
Applying the initial condition y(0) = 0, we arrive at the specific solution
y(t) = 12 4 [8 cos(2t) 4 64 sin(2t) — 788¢~4]/65.
For large values of ¢, the solution oscillates about the line y = 12.

(b) To find the value of ¢ for which the solution first intersects the line y = 12, we need
to solve the equation 8 cos(2t) + 64 sin(2t) — 788¢~** = 0. The time ¢ is approximately
10.519.

t

30. The integrating factor is p(t) = e~*. The general solution is y(t) = —1 — 3 cos(t) —
3

5 sin(t) + ce’. In order for the solution to remain finite as t — oo, we need ¢ = 0. Therefore,
yo must satisfy yo = —1 —3/2 = —5/2.

12



31. The integrating factor is u(t) = e~*/2 and the general solution of the equation is y(t) =

—2t—4/3—4et +ce®/2. The initial condition implies y(t) = —2t —4/3 —4e! + (yo+16/3)e®/2.
The solution will behave like (yo+16/3)e3/2 (for yo # —16/3). For yo > —16/3, the solutions
will increase without bound, while for yg < —16/3, the solutions will decrease without bound.
If yo = —16/3, the solution will decrease without bound as the solution will be —2t—4/3—4e".

32. By equation (41), we see that the general solution is given by
t
Y= e_t2/4/ e /4 ds + ce /4,
0

Applying L’Hospital’s rule,

o Joet s et
it et R (1/2)e
Therefore, y — 0 as t — oo.

at

33. The integrating factor is u(t) = e™.
equation by e, we have

First consider the case a # A. Multiplying the

b b
(e“ty)' _ be(af,\)t — oy = eat/be(a)\)t — efat ( e(af)\)t + C) — _}\ef)\t + ce*at.
a —

Since a, A are assumed to be positive, we see that y — 0 as t — o0o. Now if a = X above,
then we have
(ey) =b = y=e bt +c)

and similarly y — 0 as t — oo.

34. We notice that y(t) = ce™* + 3 approaches 3 as t — oo. We just need to find a first-
order linear differential equation having that solution. We notice that if y(t) = f + g, then
v+y=f+f+9g+g. Here let f =ce ' and g(t) =3. Then f'+ f=0and ¢ +¢g = 3.
Therefore, y(t) = ce™" + 3 satisfies the equation 3’ +y = 3. That is, the equation 3y +y = 3
has the desired properties.

35. We notice that y(t) = ce”* + 3 — ¢ approaches 3 — t as t — oo. We just need to find a
first-order linear differential equation having that solution. We notice that if y(t) = f + g,
then ' +y = f '+ f+ ¢ +g. Here, let f = ce™* and g(t) = 3 —t. Then f' + f =0
and ¢ + g = —1+3—t = —2 —t. Therefore, y(t) = ce™* + 3 — t satisfies the equation
y +y = —2—t. That is, the equation ' + y = —2 — t has the desired properties.

36. We notice that y(t) = ce™ 4+ 2t — 5 approaches 2t — 5 as t — co. We just need to find a
first-order linear differential equation having that solution. We notice that if y(t) = f + ¢,
then y +y = f'+ f+ ¢ +g. Here,let f = ce " and g(t) = 2t — 5. Then f'+ f =0
and ¢ + g = 2+ 2t — 5 = 2t — 3. Therefore, y(t) = ce™' + 2t — 5— satisfies the equation
y +y = 2t — 3. That is, the equation ¢y + y = 2t — 3 has the desired properties.

37. We notice that y(t) = ce™ + 4 — t* approaches 4 — t* as t — oco. We just need to find a
first-order linear differential equation having that solution. We notice that if y(t) = f + ¢,
then ' +y = f'+ f+ ¢ +g. Here, let f = ce™ and g(t) = 4 —t%. Then f'+ f = 0 and

13



g +g=-2t+4—1>=4—2t—t> Therefore, y(t) = ce™ + 2t — 5— satisfies the equation
y' +y =4 — 2t —t2. That is, the equation y’ +y = 4 — 2t — t* has the desired properties.

38. Multiplying the equation by e®*~t)

, we have
ea(tfto)y/ 4 aea(tfto)y — ea(tfto)g(t)
— (ea(t—to)y)/ — ea(t—to)g<t)
t
— y(t) = / e~ =9 g(s) ds 4+ e~ olto)y,.
to
Assuming ¢(t) — go as t — o0,

—a(t—to)

t t (
/ efa(t—s)g(s) ds — / e*a(tfs)go ds = % _ e—go — g as t — 00
‘o : a a a

0

For an example, let g(t) = e7*+ 1. Assume a # 1. By undetermined coefficients, we look
for a solution of the form y = ce™® + Ae™' + B. Substituting a function of this form into
the differential equation leads to the equation

[~A+aAle"+aB=¢"+1 = —-A+aA=1and aB=1.
Therefore, A = 1/(a — 1), B = 1/a and y = ce”* + —L-e™" + 1/a. The initial condition
y(0) = yo implies y(t) = (yo — =5 — 2)e ¥+ e " +1/a — 1/a as t — 0.
39.
(a) The integrating factor is e/ 74 Multiplying by the integrating factor, we have
el POyl 4 o TP®dln i)y — (.

Therefore,
(e dty)' —0

which implies
y(t) = Ae” IO

is the general solution.
(b) Let y = A(t)e~ J/P® 4 Then in order for y to satisfy the desired equation, we need
A PO% — A@)p(e)e TN 4 AL)p(r)e IO = (1),

That is, we need
A1) = g(t)el 0,

(c¢) From equation (iv), we see that
t
A(t) = / g(T)e/ PO qr 4 ¢
0

Therefore,

t
y(t) = e~ Jp)dt (/ g(T)efp(T)dT dr + C) )
0

14



40. Here, p(t) = —2 and g(t) = t?¢*. The general solution is given by

t
i) =70 ([ gryet e ar )

0

¢
_ edet (/ 7_2627'€f—2d7'd7_+c)
0
t
= ¢ (/ 7'2d7'+C')
0
t3
= e (§ + c) .
41. Here, p(t) = 1/t and g(t) = 3 cos(2t). The general solution is given by
¢
y(t) = e~ Jr(t)dt (/ g(T)efp(T) T dr + C)
0
t
—e (/ 3005(27‘)ef%dT dr + C’)
0

t
= % (/ 37 cos(27) dT + C’)
0

1/3 3, .
== (4_1 cos(2t) + 5tsm(2t) + C’) :

42. Here, p(t) = 2/t and g(t) = sin(t)/t. The general solution is given by

t
y(t) = e~ Ir®) (/ g(T)el PO 7 C)

0

t .
=S (/ —Sm(T)efideT—i—C’)
0

T

_ tlz (/Ot Sin7<7>2dr+c>
_ tlQ (/Othin(T)dT+C)

= tlQ (sin(t) — tcos(t) + C).

15



43. Here, p(t) = 1/2 and g(t) = 3t?/2. The general solution is given by

t
) =108 ([ gnel v ar i )

0

t 912
= Jad </ 3ief%d7d7'+0>
O 2
to 2
= e !/2 (/ %GT/QquLC’)
0

= e 2 (3t%!? — 12te'/? + 24¢'/? + O)
= et? — 12t + 24 + ce /2,

Section 2.2

1. Rewriting as ydy = x?dx, then integrating both sides, we have y?/2 = z%/3 + C, or
32— 228 =¢; y#0

2. Rewriting as ydy = [z%/(1 + 2?)]dx, then integrating both sides, we have y?/2 = In |1 +
2?)/3+C,or 3y  —2In|1+2%=¢ x#-1,y#0

3. Rewriting as y~2dy = — sin(z)dx, then integrating both sides, we have —y~! = cos(x)+C,
or y~ !+ cosx = cif y # 0;. Also, we have y = 0 everywhere

4. Rewriting as (3 + 2y)dy = (3z% — 1)dz, then integrating both sides, we have 3y + 3> —
23+ 2+ C as long as y # —3/2.

5. Rewriting as sec?(2y)dy = cos?(x)dx, then integrating both sides, we have tan(2y)/2 =
x/2 + sin(2x)/4 + C, or 2tan2y — 2x — sin2x = C as long as cos2y # 0. Also, if y =
+(2n + 1)7/4 for any integer n, then v’ = 0 = cos(2y)

6. Rewriting as (1 — y?)~"/2dy = dx/x, then integrating both sides, we have sin~!(y) =
In|z| + C. Therefore, y = sin|ln |x| + ¢| as long as « # 0 and |y| < 1;. We also notice that if
y = £1, then 2y’ = 0 = (1 — y*)'/2 is a solution.

7. Rewriting as (y + €¥)dy = (x — e"%)dz, then integrating both sides, we have y*/2 + e¥ =
22/2+e+Cory? —a?+2(e¥ —e®) = C as long as y + e¥ # 0.

8. Rewriting as (1+y?)dy = 2%dx, then integrating both sides, we have y+v3/3 = 2°/3+C,
or 3y +y® —a® =c;.

9.

(a) Rewriting as y~2dy = (1—2x)dx, then integrating both sides, we have —y~! = z—224-C.
The initial condition, y(0) = —1/6 implies C' = 6. Therefore, y = 1/(z? — z — 6).

(b)
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(c) —2<z<3

10.

(a) Rewriting as ydy = (1 — 2x)dz, then integrating both sides, we have 3?/2 = v — 2? + C.
Therefore, y = +v/2x — 222 + 4. The initial condition, y(1) = —2 implies C' = 2 and

y = —2x — 222 +4.
(b)

5 _\K 0 1 Vé 3

(¢) -l<az<2

11.

(a) Rewriting as ze*dr = —ydy, then integrating both sides, we have ze® —e* = —y?/2+C'.
The initial condition, 3(0) = 1 implies C' = —1/2. Therefore, y = [2(1 — x)e® — 1]V/2.

(b)

17



(c) —1.68 < x < 0.77 approximately

12.

(a) Rewriting as r—2dr = 0~'d6, then integrating both sides, we have —r~* = Inf + C. The
initial condition, r(1) = 2 implies C' = —1/2. Therefore, r = 2/(1 — 2In6).

(b)

10 |
|
8- |
6,
r /
4+ /
2 P4
2 01 1 2 3
_27 X
—47

(c) 0< < /e
13.

(a) Rewriting as ydy = 2x/(1+x?)dx, then integrating both sides, we have y?/2 = In(1+x2?)+
C. The initial condition, y(0) = —2 implies C' = 2. Therefore, y = —[21In(1 +2?) +4]'/2.

(b)

18



(c) —o0o <z <0
14.

(a) Rewriting as y~3dy = x(1 + 2?)""/2dz, then integrating both sides, we have —y2/2 =
V1422 + C. The initial condition, y(0) = 1 implies C = —3/2. Therefore, y =
[3—2vT+a2 2

(b)

‘ 10+ ‘
o
| 6 J
\ r |
‘\ 4
N 2 e
-1 -0.5 0.5 1
21 X
4

(©) ] < 35

15.
(a) Rewriting as (1 + 2y)dy = 2xdz, then integrating both sides, we have y + y*> = 22 + C..

The initial condition, y(2) = 0 implies C' = —4. Therefore, y* +y = x> — 4. Completing

1 1
the square, we have (y + 1/2)? = 2? — 15/4, and, therefore, y = —§+ 5\/43:2 —15.

(b)
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(c) x> %\/ﬁ

16.

(a) Rewriting as 4y°dy = z(x2+1)dz, then integrating both sides, we have y* = (22+1)%/4+
C. The initial condition, y(0) = —1/4/2 implies C' = 0. Therefore, y = —+/(22 +1)/2.

(b)

-4 2 0 2 4
_— T~ X
- -
— - ] o -
— ~~
—44

(¢) —o0o <z < o0

17.

(a) Rewriting as (2y — 5)dy = (322 — )dz, then integrating both sides, we have y* — by =
r3 —e* 4+ C. The initial condition, y(0) = 1 implies C' = —3. Completing the square, we
have (y — 5/2)? = 2® — e* 4 13/4. Therefore, y = 5/2 — /23 — e* + 13 /4.

(b)

20



—1.4445 < x < 4.6297 approximately

Rewriting as (3 +4y)dy = (e~% — e*)dx, then integrating both sides, we have 3y + 2y? =
—(e" +e~*) 4+ C. The initial condition, y(0) = 1 implies C' = 7. Completing the square,
we have (y +3/4)% = —(e” + ™) /2 4 65/16. Therefore, y = —2 + 11/65 — 8e® — 8e~*.

oy

1.5

0.57

-2

]

-0.57

-1-

X

(¢) |x| < 2.0794 approximately

19.

(a) Rewriting as cos(3y)dy = — sin(2x)dx, then integrating both sides, we have sin(3y)/3 =
cos(2x)/2 + C. The initial condition, y(7/2) = /3 implies C' = 1/2. Therefore, y =

(b)

[ — arcsin(3 cos? )] /3.
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(c) |x —m/2| < 0.6155 approximately

20.

(a) Rewriting as y*dy = arcsin(z)/+v/1 — z2dz, then integrating both sides, we have y*/3 =
(arcsin(z))?/2 4+ C. The initial condition, y(0) = 1/ implies C' = 0. Therefore, y =
3

2 (arcsin z)?] 13

(b)

/1 08.06-04-02 0.2 of4xof6 08 1
~0.5]

—1J

(c) -1<z<1

21. Rewriting the equation as (3y* — 6y)dy = (1 + 32?)dz and integrating both sides, we
have y® — 3y? = o + 2% + C. The initial condition, y(0) = 1 implies ¢ = —2. Therefore,
Y3 —3y? —x—2*+2 = 0. When 3y* — 6y = 0, the integral curve will have a vertical tangent.
In particular, when y = 0,2. From our solution, we see that y = 0 implies z = 1 and y = 2
implies x = —1. Therefore, the solution is defined for —1 < x < 1.

22. Rewriting the equation as (3y* — 4)dy = 3x?dxr and integrating both sides, we have
y3—4y = 23+C. The initial condition y(1) = 0 implies C' = —1. Therefore, y3—4y—a3 = —1.
When 3y? — 4 = 0, the integral curve will have a vertical tangent. In particular, when
y = +£2/4/3. At these values for y, we have x = —1.276,1.598. Therefore, the solution is
defined for —1.276 < x < 1.598

22



23. Rewriting the equation as y~2dy = (2 + z)dr and integrating both sides, we have
—y~' = 2z + 2?/2 + C. The initial condition y(0) = 1 implies C = —1. Therefore,
y = —1/(2*/2 + 2x — 1). To find where the function attains it minimum value, we look
where y' = 0. We see that 4/ = 0 implies y = 0 or x = —2. But, as seen by the solution
formula, y is never zero. Further, it can be verified that y”(—2) > 0, and, therefore, the
function attains a minimum at z = —2.

24. Rewriting the equation as (3 4 2y)dy = (2 — €”)dz and integrating both sides, we have
3y +y*> = 22 — e” + C. By the initial condition y(0) = 0, we have C' = 1. Completing the
square, it follows that y = —3/24+/2z — e* + 13/4. The solution is defined if 2z—e*+13/4 >
0, that is, —1.5 < x < 2 (approximately). In that interval, y = 0 for x = In2. It can be
verified that y”(In2) < 0, and, therefore, the function attains its maximum value at x = In 2.

25. Rewriting the equation as (3 4 2y)dy = 2 cos(2x)dz and integrating both sides, we have
3y +y?* = sin(2x) + C. By the initial condition y(0) = —1, we have C' = —2. Completing the
square, it follows that y = —3/24/sin(2z) + 1/4. The solution is defined for sin(2z)+1/4 >
0. That is, —0.126 < x < 1.44. To find where the solution attains its maximum value, we
need to check where y' = 0. We see that ' = 0 when 2cos(2x) = 0. In the interval of
definition above, that occurs when 2z = 7/2, or z = 7/4.

26. Rewriting this equation as (1 + y?)~'dy = 2(1 + x)dz and integrating both sides, we
have tan~!(y) = 2z + 2% + C. The initial condition implies C' = 0. Therefore, the solution
is y = tan(z? +2z). The solution is defined as long as —7/2 < 2z + 2* < 7/2. We note that
2¢ + x? > —1. Further, 2z + 2% = 7/2 for x = —2.6 and 0.6. Therefore, the solution is valid
in the interval —2.6 < x < 0.6. We see that 3’ = 0 when x = —1. Furthermore, it can be
verified that y”(x) > 0 for all  in the interval of definition. Therefore, y attains a global
minimum at r = —1.

27.
(a) First, we rewrite the equation as dy/[y(4 — y)] = tdt/3. Then, using partial fractions,
we write " 4 .
1/4 dy + 14 dy = - dt
y 4 -
Integrating both sides, we have
1 1 2
-1 —-ln|d—yl==+C
oyl = ginld—yl= =+
Y 2
=1 =-t"+C
Hy- 4‘ 3
— ’_y Ce2/3

From the equation, we see that yo =0 = C =0 = y(t) = 0 for all . Otherwise,
y(t) > 0 for all t or y(t) < 0 for all . Therefore, if yo > 0 and |y/(y —4)| = Ce*’/? — oo,
we must have y — 4. On the other hand, if yo < 0, then y — —oco as t — oo. (In
particular, y — —oo in finite time.)
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(b) For yo = 0.5, we want to find the time 7" when the solution first reaches the value 3.98.
Using the fact that |y/(y — 4)] = Ce**/3 combined with the initial condition, we have
C' = 1/7. From this equation, we now need to find 7" such that [3.98/.02| = ¢27°/3/7.
Solving this equation, we have T' = 3.29527.

28.

(a) Rewriting the equation as y~!(4 — y)~'dy = t(1 + ¢)~'dt and integrating both sides, we
have In|y| —In |y — 4| = 4t — 4In |1 +t| + C. Therefore, |y/(y —4)] = Ce* /(1 +t)* — oo
as t — oo which implies y — 4.

(b) The initial condition y(0) = 2 implies C' = 1. Therefore, y/(y —4) = —e* /(1 +1¢)*. Now
we need to find T such that 3.99/ — .01 = —e?” /(14 T)*. Solving this equation, we have
T = 2.84367.

(c) Using our results from part (b), we note that y/(y — 4) = yo/(yo — 4)e* /(1 + ).
We want to find the range of initial values yo such that 3.99 < y < 4.01 at time ¢t = 2.
Substituting ¢ = 2 into the equation above, we have yo/(yo —4) = (3/e*)*y(2)/(y(2) —4).
Since the function y/(y — 4) is monotone, we need only find the values yy satisfying
vo/(yo — 4) = —399(3/e?)* and yo/(yo — 4) = 401(3/e?)*. The solutions are yy = 3.6622
and yo = 4.4042. Therefore, we need 3.6622 < 1y, < 4.4042.

29. We can rewrite the equation as

cy +d
ay + b

Y 4 gy —dp = © be |
= €T _—
ay +b ay+by a a’y+ab ay+b

)dy:dx:> dy = dz.

Then integrating both sides, we have

b d
fy_ —§1n|a2y+ab\ +—Injay + b =z + C.
a a a
Simplifying, we have

b b d
Ey——gln|a|——§1n|ay+b|—|——ln|ay+b|:x-i—C
a” a a a

d—>b
— Ey—l—(a 5 C)1n|ay+b|:x+0.
a a

Note, in this calculation, since 2—3 In |a| is just a constant, we included it with the arbitrary
constant C. This solution will exist as long as a # 0 and ay + b # 0.

30.

(a) Factoring an z out of each term in the numerator and denominator of the right-hand

side, we have
dy _z((y/z)—4) _ (y/x)—4
dr (1= (y/z) 1-(y/z)

as claimed.
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(b) Letting v = y/x, we have y = zv, which implies that dy/dz = v + x - dv/dx.

(c) Therefore,

n dv v—4
vd - — =
dx 11—

which implies that
dv  v—4—v(l-v) v*—-4

de (1—v) Sl

(d) To solve the equation above, we rewrite as

1— d
Udv:—m.
T

v2 —4

Integrating both sides of this equation, we have
1 3
—Z—lln]v—Q\ — Zln|v—|—2\ =In|z| + C.

Applying the exponential function to both sides of the equation, we have

lv — 2| V4o + 2|73* = C|a|.
(e) Replacing v with y/x, we have

/4
= Clz| = |z|ly—22|*jy+22|¥* = Clz| = |y+22)*|y—22| = C.

31.

(a)
dy

- = 1+ (y/x) + (y/=)".

Therefore, the equation is homogeneous.
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(b) The substitution v = y/x results in the equation

d d
v+:v—v:1—|—v+1)2 = x—vzl—l—vz.
dx dx

This equation can be rewritten as

dv  dx
1+v2  z
which has solution arctan(v) = In|z| + ¢. Rewriting back in terms of y, we have

arctan(y/x) — In|z| = c.
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32.

dy 43
7y = W/r)" 4 5 (y/2).
Therefore, the equation is homogeneous.

(b) The substitution v = y/x results in the equation

n dv 1%+ 32202 dv 1402
v+ pr— = — -
dx 2220 dx 2xv

The solution of this separable equation is v? + 1 = cx. Rewriting back in terms of y, we
have 22 + y? — ca® = 0.

(c)
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33.

dy _ 4(y/z) -3
der  2—(y/z)
Therefore, the equation is homogeneous.

(b) The substitution v = y/x results in the equation

n dv 4v —3 dv v+221—3
vt r— = — = _
dz 2—w da: 2—w

This equation can be rewritten as

2—v dx
——dv = —.
v2+2v -3 x
Integrating both sides and simplifying, we arrive at the solution |v 4 3|75/4|v — 1|'/* =
|z| + ¢. Rewriting back in terms of y, we have |y — z| = c|ly + 3z|°. We also have the
solution y = —3z.

()
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34.
(a)

-1
dy_—2—g[2+g] |
dx T T

Therefore, the equation is homogeneous.
(b) The substitution v = y/x results in the equation

L 5 v dv v? 4 5v + 4
vt r—=-2— — =
dx 24w dx (24 v)

This equation is separable with solution (v+4)%|v+1| = C//x3. Rewriting back in terms
of y, we have |y + z|(y + 4x)* =

(c)

35.

dy _1+43(y/x)
de 1 (y/z)
Therefore, the equation is homogeneous.

(b) The substitution v = y/x results in the equation

o dv  1+3v . dv vV +2v+1
v = r—= .
d;t: 1—vw dx 1—wv

This equation can be rewritten as

1—v dz
Y =Y
v2+2v+1 x
which has solution —=2; —1In v 4 1| = In || 4 ¢. Rewriting back in terms of y, we have

2¢/(x +y) + In |z + y| = ¢. We also have the solution y = —z.
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36.

(a)
dy

o = 143(y/x) + (y/x)".

Therefore, the equation is homogeneous.

(b) The substitution v = y/x results in the equation
d d
U+x—v =1+3v+® = :U—U =1+ 2v+ 02
dz dz

This equation can be rewritten as

dv dx

1+20+v2  x

which has solution —1/(v + 1) = In|z| + ¢. Rewriting back in terms of y, we have
z/(z +y) + In|z| = c. We also have the solution y = —z.

(c)
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37.

(@
Y L) - /),

Therefore, the equation is homogeneous.

(b) The substitution v = y/x results in the equation

N dv_1+1 3 . dv_1—5v2
v mda:_ 20 2" xda:_ 0

This equation can be rewritten as

1—5v2v T

which has solution —%ln\l — 5v% = In|z| + ¢. Applying the exponential function,
we arrive at the solution 1 — 5v? = ¢/|z|5. Rewriting back in terms of y, we have

2P (2? = 5y%) = ¢
(c)

38.

(a) ]
Y= S y) — )

Therefore, the equation is homogeneous.

(b) The substitution v = y/x results in the equation

N dvv 3 1 _, dv  v*—1
VT T——=2-0— 70 — T = :
dr 2 2 dx 2v
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This equation can be rewritten as

2
Y dv:d—x
x

v2 —1

which has solution In|v? — 1| = In|z| + ¢. Applying the exponential function, we have
v? — 1 = C|z|. Rewriting back in terms of y, we have c|z|* = (y* — z?)

(c)
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Section 2.3
1. Let Q(t) be the quantity of dye in the tank. We know that

aq
dt

—rate in — rate out.

Here, fresh water is flowing in. Therefore, no dye is coming in. The dye is flowing out at the
rate of (Q/200)g/l - 2l/min = /100 1/min. Therefore,

w__Q
dt ~ 1000

The solution of this equation is Q(t) = Ce™#1%. Since Q(0) = 200 grams, C' = 200. We
need to find the time 7" when the amount of dye present is 1% of what it is initially. That
is, we need to find the time 7" when Q(T) = 2 grams. Solving the equation 2 = 200e~/1%9,
we conclude that 7= 100 1n(100) minutes.

2. Let Q(t) be the quantity of salt in the tank. We know that

aq
dt

= rate in — rate out.

Here, water containing v g/liter of salt is flowing in at a rate of 2 liters/minute. The salt is
flowing out at the rate of (Q/120)g/l - 2l/min = @/60 1/min. Therefore,

Q_, @

a0
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The solution of this equation is Q(t) = 120y + Ce~*/%. Since Q(0) = 0 grams, C = —120.
Therefore, Q(t) = 120y[1 — e7/%°). As t — oo, Q(t) — 1207.

3. Let Q(t) be the quantity of salt in the tank. We know that

dQ) :
—— =rate In — rate out.
dt
Here, water containing 1/2 lb/gallon of salt is flowing in at a rate of 2 gal/minute. The salt
is flowing out at the rate of (Q/100)lb/gal - 2gal/min = Q) /50 gal/min. Therefore,
d
Q_,_Q

dt 50
The solution of this equation is Q(t) = 50 + Ce~*/%°. Since Q(0) = 0 grams, C = —50.
Therefore, Q(t) = 50[1 — e*/%°] for 0 < ¢ < 10 minutes. After 10 minutes, the amount of
salt in the tank is Q(10) = 50[1 — e~/°] 2 9.06 Ibs. Starting at that time (and resetting the
time variable), the new equation for dQ/dt is given by

Q  Q

dt 50

since fresh water is being added. The solution of this equation is Q(t) = Ce™*/%°. Since we
are now starting with 9.06 Ibs of salt, Q(0) = 9.06 = C. Therefore, Q(t) = 9.06e/%. After
10 minutes, Q(10) = 9.06e~1/5 =2 7.42 Ibs.

4. Let Q(t) be the quantity of salt in the tank. We know that

=rate in — rate out.

dt
Here, water containing 1 Ib/gallon of salt is flowing in at a rate of 3 gal/minute. The salt is
flowing out at the rate of (Q/(200+t))lb/gal - 2gal/min = 2Q) /(200 + t) Ib/min. Therefore,

dQ_B_ 20Q)
dt 200 + ¢

This is a linear equation with integrating factor u(t) = (200 + ¢)2. The solution of this
equation is Q(t) = 200 + ¢ + C(200 + ¢)72. Since Q(0) = 100 lbs, C = —4,000, 000.
Therefore, Q(t) = 200 + t — 4,000, 000/(200 + ¢)?. Since the tank has a net gain of 1 gallon
of water every minute, the tank will reach its capacity after 300 minutes. When ¢t = 300, we
see that Q(300) = 484 lbs. Therefore, the concentration of salt when it is on the point of
overflowing is 121/125 lbs/gallon. The concentration of salt is given by Q(¢)/(200+t) (since
t gallons of water are added every ¢ minutes). Using the equation for @) above, we see that
if the tank had infinite capacity, the concentration would approach 1 as t — oo.

D.
(a) Let Q(t) be the quantity of salt in the tank. We know that

aQ
dt

= rate in — rate out.
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o1 I . o
Here, water containing — ( 1 + ismt oz/gallon of salt is flowing in at a rate of 2

4
gal/minute. The salt is flowing out at the rate of @)/1000z/gal - 2gal/min = @Q/50

oz/min. Therefore,

daQ 1 N 1, ,

— = -+ —sint — —.

it 2 147 TR
This is a linear equation with integrating factor u(t) = €*/°°. The solution of this equation
is Q(t) = (12.5sint — 625 cos t +63150e7/°0) /2501 + C. The initial condition, Q(0) = 50

oz implies C' = 25. Therefore, Q(t) = 25 + (12.5sint — 625 cost + 63150e7/°0) /2501.

50+
\
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40 :
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(c) The amount of salt approaches a steady state, which is an oscillation of amplitude 1/4
about a level of 25 oz.

6.

(a) Using the Principle of Conservation of Energy, we know that the kinetic energy of a
particle after it has fallen from a height h is equal to its potential energy at a height .
Therefore, mv?/2 = mgh. Solving this equation for v, we have v = \/2gh.

5

(b) The volumetric outflow rate is (outflow cross-sectional area) x (outflow velocity): aa+/2g
The volume of water in the tank is

where A(u) is the cross-sectional area of the tank at height w. By the chain rule,

dV AV dh dh
= an @ AW

Therefore,
av dh
— = A(h)— = —aa~/2gh.
ar ~ AW = maavZy
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(c) The cross-sectional area of the cylinder is A(h) = m(1)? = 7. The outflow cross-sectional

area is a = 7(.1)?2 = .01l7. From part (a), we take o = 0.6 for water. Then by part (b),
we have

dh
— = —0.0067+/2gh.
T TV 29

This is a separable equation with solution A(t) = 0.000018gt? — 0.006/2gh(0)t + h(0).
Setting 1(0) = 3 and g = 9.8, we have h(t) = 0.0001764t* — 0.046¢ + 3. Then h(t) =0
implies t =~ 130.4 seconds.

(a) The equation for S is
as

E —
with an initial condition S(0) = Sp. The solution of the equation is S(t) = Spe’". We
want to find the time 7" such that S(T) = 2S;. Our equation becomes 25, = Spe™”.

Dividing by Sy and applying the logarithmic function to our equation, we have rT" =
In(2). That is, T'= In(2) /7.

rS

(b) If r = .07, then 7" = In(2)/.07 = 9.90 years.

(c) By part (a), we also know that r = In(2)7 where T is the doubling time. If we want the
investment to double in 7" = 8 years, then we need r = In(2)/8 = 8.66%.

8.
(a) The equation for S is given by
ds
— =rS+k.
7 ro +
o : : : ko
This is a linear equation with solution S(t) = —[e"™ — 1].
r

(b) Using the function in part (a), we need to find k& so that S(40) = 1,000,000 assuming
r = .075. That is, we need to solve

3
1 _ 07540 _ 11
000,000 = e ]

The solution of this equation is k = 3930.

(¢) Now we assume that k& = 2000 and want to find . Our equation becomes
2000
1,000,000 = ——[e*" — 1].
r

The solution of this equation is approximately 9.77%.
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(a)

Let S(t) be the balance due on the loan at time t. To determine the maximum amount

the buyer can afford to borrow, we will assume that the buyer will pay $800 per month.

Then

ds
=2 = 095 — 12(800).
= 095 — 12(800)

The solution is given by equation (18), S(t) = Spe® — 106, 667(e?% —1). If the term of

the mortgage is 20 years, then S(20) = 0. Therefore, 0 = Sye %% — 106, 667(e (29 —1)
which implies Sy &~ $89, 035.

Since the homeowner pays $800 per month for 20 years, he ends up paying a total of
$192,000 for the house. Since the house loan was $89, 035, the rest of the amount was
interest payments. Therefore, the amount of interest was approximately $102, 965.

Let S(t) be the balance due on the loan at time ¢. Taking into account that ¢ is measured
in years, we rewrite the monthly payment as 800(1 +¢/10) where ¢ is now in years. The
equation for S is given by

% — 095 — 12(300)(1 + /10).

This is a linear equation. Its solution is S(t) = 225185 + 10667t + ce®. The initial
condition S(0) = 100,000 implies ¢ = —125185. Therefore, the particular solution is
S(t) = 225185 + 10667t — 125185¢ 7. To find when the loan will be paid, we just need
to solve S(t) = 0. Solving this equation, we conclude that the loan will be paid off in
11.28 years (135.36 months).

From part (a), we know the general solution is given by S(t) = 225185 + 10667t + ce %%,
Now we want to find ¢ such that S(20) = 0. The solution of this equation is ¢ = —72486.
Therefore, the solution of the equation will be S(t) = 225185 + 10667 — 72846,
Therefore, S(0) = 225185 — 72846 = 152699.

If Sy is the initial balance, then the balance after one month is

S1 = initial balance + interest - monthly payment

= So + TSO — k.
Similarly,

SQIS1+T51—]€

In general,
Sn = (1 + T)Sn,1 — k.
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(b) R =1+ r implies S,, = RS,,_1 — k. Therefore,

S1 = RSy —k
Sy = RS, — k= R[RSy — k| — k= R?S; — (R+ 1)k
S3 = RSy —k = R[R*Sy — (R+1)k] — k= R¥Sy — (R* + R+ 1)k.
(c) We check the base case, n = 1. We see that
R—1
S1=RSy—k=RS) — (ﬁ) k,

which implies that that the condition is satisfied for n = 1. We assume that

S, = R"Sp — }g__llk
to show that e
Spi1 = R"S, — ﬂk.
We see that
Spt1 = RS, — k
—R{R"So— Rn_lk} —k

n+1
= RS, — i ) k—k

(n+1

s () (52)
<
(5

n+1 _
_ priig, - R R + R 1) i
Rn-i—lso Rn+1 ) .

(d) We are assuming that Sy = 20,000 and r = .08/12. We need to find & such that Sys = 0.

Our equation becomes
gy~ (B0 g
S48 =R 0 — ( R_1 ) = U.

Therefore,

(1+.08/12)% —1 08"
k= (1+>=] -2
( 08/12 1 0,000,

which implies k ~ 488.26, which is very close to the result in example 2

12.
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(a) The general solution is Q(t) = Que™"". If the half-life is 5730, then Qy/2 = Qe >"30"
implies —5730r = In(1/2). Therefore, r = 1.2097 x 10~* per year.

(b) Therefore, Q(t) = Q06—1.2097><10—4t.

(¢) Given that Q(T) = Q,/5, we have the equation 1/5 = e~12097<107*T " Qolying for T', we
have 7' = 13, 304.65 years.

13. Let P(t) be the population of mosquitoes at any time ¢, measured in days. Then

dP
& P —20,000.
dt
The solution of this linear equation is P(t) = Py — 229% (e — 1), In the absence of

predators, the equation is dPy/dt = rP;. The solution of this equation is Py(t) = Pye™.
Since the population doubles after 7 days, we see that 2Py = Pye™. Therefore, r = In(2)/7 =
.09902 per day. Therefore, the population of mosquitoes at any time ¢ is given by P(t) =
200, 00099 — 201, 997(e %% — 1) = 201,997 — 1997¢99%.

14.

(a) The solution of this separable equation is given by y(t) = exp[2/10+4¢/10 — 2 cos(t)/10].
The doubling-time is found by solving the equation 2 = exp[2/10 + /10 — 2 cos(t)/10].
The solution of this equation is given by 7 & 2.9632.

(b) The differential equation will be dy/dt = y/10 with solution y(t) = y(0)e!/!°. The
doubling time is found by setting y(f) = 2y(0). In this case, the doubling time is
T~ 6.9315.

(c) Consider the differential equation dy/dt = (0.5+sin(27t))y/5. This equation is separable
with solution y(t) = exp[(14nt—cos(27t))/(107)]. The doubling time is found by setting
y(t) = 2. The solution is given by 6.9167.

(d)

2.57

1.5

0.59

15.
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(b) Based on the graph, we estimate that y. ~ 0.83.

(c) We sketch the graphs below for £ = 1/10 and k£ = 3/10, respectively. Based on these
graphs, we estimate that y.(1/10) ~ .41 and y.(3/10) ~ 1.24.
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0 5 1‘0t 15 20
2
1.5/\/
® 1]
0.5
0 5 1‘ot\ 15 20

(d) From our results from above, we conclude that ¥, is a linear function of k.



16. Let T'(t) be the temperature of the coffee at time ¢. The governing equation is given by

ar
— = —k(T —70).

This is a linear equation with solution T'(t) = 70 4+ ce~*. The initial condition 7'(0) = 200
implies ¢ = 130. Therefore, T'(t) = 70 + 130e %!, Using the fact that T(1) = 190, we see
that 190 = 70 + 130e~* which implies k = —1In(12/13) = .08 per minute. To find when the
temperature reaches 150 degrees, we just need to solve T'(t) = 70 + 130e7%%! = 150. The
solution of this equation is t = —1In(80/130)/.08 = 6.07 minutes.

17.

(a) The solution of this separable equation is given by
3 _ ug
U= .
audt + 1

Since ug = 2000, the specific solution is

) 2000
u = .
(6t/125 + 1)1/3

b000
1800 \\
1600 -
1400

1200

1000 -

0 20 40 60 80 100 120 140 160 180 200
t

(¢) We look for 7 so that u(7) = 600. The solution of this equation is ¢ ~ 750.77 seconds.

18.

(a) The integrating factor is u(t) = €. Then u = e [ ke* (T, + T} cos(wt)) = ce ™™ +
To+ kT (k coswt +wsinwt)/(k* +w?). Since e — 0 as t — oo, we see that the steady
state is S(t) = Ty + KTy (k cos(wt) + wsin(wt))/(k* + w?).

(b)
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The amplitude R of the oscillatory part of S(t) is approximately 9 degrees Fahrenheit.
The time lag 7 between maxima is approximately 3.5 seconds.

From above, the oscillatory part of S(t) is given by

kT
NEE

for 7 such that cos(wr) = k/VE?+w? and sin(wr) = w/Vk?+w? That is, 7 =
Larctan(w/k). Further, letting R = kT /Vk? + w?, we can write the oscillatory part of
S(t) as

k cos(wt) + wsin(wt)

kT =
! k2 4 w?

(cos(wt) cos(wT) + sin(wt) sin(wT)

RJcos(wt) cos(wT) + sin(wt) sin(wt)] = Rcos(w(t — 7)).

Below we show graphs of R and 7 versus k.

002 04 06 08

1 12 14 16 1.8 2
k
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19.

(a) The differential equation for @ is

dQ Q(1)
E = k?” ‘l‘ P 77”.
Therefore,
V@ =kr+ P —c(t)r
dt '

The solution of this equation is c(t) = k + P/r + (co — k — P/r)e™™/V. Ast — oo,
c(t) = k+ P/r.

(b) In this case, we will have ¢(t) = coe™"/V. The reduction times are Ty = In(2)V/r and
T10 = 11’1(10)V/7’

(c) Using the results from part (b), we have: Superior, T' = 431 years; Michigan, T' = 71.4
years; Erie, T' = 6.05 years; Ontario, T = 17.6 years.

20.

(a) Assuming no air resistance, we have dv/dt = —9.8. Therefore, v(t) = —9.8t + vy =
—9.8t + 20 and its position at time ¢ is given by s(t) = —4.9t* + 20t + 30. When the
ball reaches its max height, the velocity will be zero. We see that v(t) = 0 implies
t =20/9.8 = 2.04 seconds. When ¢ = 2.04, we see that s(2.04) = 50.4 meters.

(b) Solving s(t) = —4.9t* + 20t + 30 = 0, we see that ¢ = 5.248 seconds.
(c)
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21.
(a)

(b)
()

20

10

50 —

404

307

20

10

We have mdv/dt = —v/30 — mg. Given the conditions from problem 20, we see that
the solution is given by v(t) = —44.1 + 64.1e7*/*>. The ball will reach its max height
when v(t) = 0. This occurs at ¢ = 1.683 seconds. The height of the ball is given by
s(t) = —318.45—44.1t —288.45¢~*/*> When t = 1.683, we have 5(1.683) = 45.78 meters,
the maximum height.

The ball will hit the ground when s(¢) = 0. This occurs when ¢ = 5.128 seconds.

20+
104
t
L 2 $ 4 S
0
-10
\
-

-20 \\
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22.
(a)

40

301

20+

104

The equation for the upward motion is mdv/dt = —uv* — mg where p = 1/1325. Using
the data from exercise 20, and the fact that this equation is separable, we see its solution
is given by v(t) = 44.133 tan(.425 — .222t). Setting v(t) = 0, we see the ball will reach its
max height at ¢ = 1.916 seconds. Integrating v(t), we see the position at time ¢ is given
by s(t) = 198.751In(cos(0.222t — 0.425)) + 48.57. Therefore, the max height is given by
$(1.916) = 48.56 meters.

The differential equation for the downward motion is mdv/dt = +puv?—mg. The solution
of this equation is given by v(T) = 44.13(1 — €t/22%) /(1 + €¥/2%°). Integrating v(t), we
see that the position is given by s(t) = 99.291n(e'/2% /(1 + €!/2%)2) 4 186.2. Setting
s(t) = 0, we see that the ball will spend ¢ = 3.276 seconds going downward before hitting
the ground. Combining this time with the amount of time the ball spends going upward,
1.916 seconds, we conclude that the ball will hit the ground 5.192 seconds after being
thrown upward.

20+

10
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23.
(a) Measure the positive direction of motion downward. Then the equation of motion is

given by

md_v_ —0.75v+mg  0<t<10
dt —12v +myg t > 10.

For the first 10 seconds, the equation becomes dv/dt = —v/7.5 4+ 32 which has solution
v(t) = 240(1 — e7¥/75). Therefore, v(10) = 176.7 feet per second.

(b) Integrating the velocity function from part (a), we see that the height of the skydiver at
time ¢ (0 < ¢ < 10) is given by s(t) = 240t+1800e~*/7>—~1800. Therefore, s(10) = 1074.5

feet.

(c) After the parachute opens, the equation for v is given by dv/dt = —32v/15 + 32 (as
discussed in part (a)). We will reset ¢ to zero. The solution of this differential equation
is given by v(t) = 15 + 161.7¢732/15 As t — oo, v(t) — 15. Therefore, the limiting

velocity is v; = 15 feet/second.

(d) Integrating the velocity function from part (c), we see that the height of the sky diver
after falling ¢ seconds with his parachute open is given by s(t) = 15t — 75.8e732/15
1150.3. To find how long the skydiver is in the air after the parachute opens, we find T
such that s(T") = 0. Solving this equation, we have T' = 256.6 seconds.

1807
160+ |
140 |
120
100 |
801
601
s0- |
201

0 50 100 150 200 250

44



24.
(a)
(b)

()

25.

26.
(a)

(b)

The equation of motion is given by dv/dx = —pwv.

The speed of the sled satisfies In(v/vy) = —px. Therefore, p must satisfy In(15/150) =
—2000p. Therefore, ;1 = In(10)/2000 1.

The solution of dv/dt = —puv? can be expressed as 1/v — 1/vy = ut. Using the fact that
1 mi/hour ~ 1.467 feet/second, the elapsed time is ¢ ~ 35.56 seconds.

Measure the positive direction of motion upward. The equation of motion is given by
mdv/dt = —kv — mg. The solution of this equation is given by v(t) = —mg/k +
(vo + mg/k)e ¥/™  Solving v(t) = 0, we see that the mass will reach its max height
tm = (m/k)In[(mg + kvy)/mg| seconds after being projected upward. Integrating the
velocity equation, we see that the position of the mass at this time will be given by the
position equation

s(t) = —mgt/k + {(%)29 + %} (1 — e kt/m),

Therefore, the max height reached is

mug (7:)21n [mg—l—kvo] ‘

m — tm:__
Tm = 8(tn) = 5= =9 o

Y

These formulas for ¢,, and z,,, come from the fact that for § << 1, In(1+6) =0 —36°+
%53 — }154 + .... This formula is just Taylor’s formula.

Consider the result for ¢, in part (b). Multiplying the equation by %, we have

tmg ) 1 kv n 1 (kv 2
vo 2mg 3 \mg U
The units on the left, must match the units on the right. Since the units for t,,9/vy =

(s-m/s®)/(m/s), the units cancel. As a result, we can conclude that kvy/mg is dimen-
sionless.

The equation of motion is given by mdv/dt = —kv — mg. The solution of this equation
18 given by ’U(t) = —mg/k; + (UO + mg/k)efkt/m.

Applying L’Hospital’s rule, as k — 0, we have

llﬂir% —mg/k + (v + mg/k)e ™ */™ = vy — gt.
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(c)

27.
(a)

28.

limO —mg/k + (vg + mg/k)e */™ = 0.

The equation of motion is given by

dv 6 N 4 4 4
m— = —6mwuav —Ta’g — p=ma’y.
dt H P 3 9 P3 9

We can rewrite this equation as

o+ 67ruav _ 4_L7ra3g
3 m

(0 —p).

Multiplying by the integrating factor e®™#e/™ we have

4 3
(eﬁﬂuat/mv)/ _ gﬂ'zlg(pl

6mpat/m

— ple

Integrating this equation, we have

2
v = e—67r,uat/m 2a g(pl B p) eﬁmuat/m +C

Mt
_ 2@29(pl B p) + Cve—ﬁﬂ'uat/m.
&)L

Therefore, we conclude that the limiting velocity is vy, = (2a2g(p’ — p))/9u.
By the equation above, we see that the force exerted on the droplet of oil is given by

4 4
Ee = —6mpav + ,0/§7TCL39 - pgﬁa?’g.

If v =0, then solving the above equation for e, we have

4za’q(p = p)
CE= ——"—.
3E

The equation is given by mdv/dt = —kv — mg. The solution of this equation is v(t) =
—(mg/k)(1 — e /™). Integrating, we see that the position function is given by x(t) =
—(mg/k)t + (m/k)?g(1 — e */™) + 30. First, by setting () = 0, we see that the ball
will hit the ground ¢ = 3.63 seconds after it is dropped. Then v(3.63) = 11.58 m/second
will be the speed when the mass hits the ground.
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(b)

In terms of displacement, we have mvdv/dx = —kv 4+ mg. This equation comes from
applying the chain rule: dv/dt = dv/dz-dz/dt = vdv/dz. The solution of this differential
equation is given by
mw m291 mg — kv
z(v) = - "2 o

Plugging in the given values for k,m, g, we have z(v) = —1.250 — 15.311n |0.0816v — 1|.
If v = 10, then z(10) = 13.45 meters.

Using the equation for x(v) above, we set z(v) = 30, v = 10, m = 0.25, g = 9.8. Then
solving for k, we have k = 0.24.

The equation of motion is given by mdv/dt = —GMm/(R + z)?. By the chain rule,

dv dz a Mm

M dt T TRt
Therefore,
mo ™ _ _g Mm_
dr (R+z)*

This equation is separable with solution v? = 2GM (R +x)~! +2gR — 2GM/R. Here we
have used the initial condition vy = v/2gR. From physics, we know that ¢ = GM/R?.
Using this substitution, we conclude that v(z) = /2¢9[R/V R + x].

By part (a), we know that dz/dt = v(x) = /2g[R/v/ R+ x]. We want to solve this
differential equation with the initial condition x(0) = 0. This equation is separable
with solution z(t) = [3(y/2gRt + 2R%*?*3 — R. We want to find the time 7" such that
x(T) = 240,000. Solving this equation, we conclude that 7"~ 50.6 hours.

dv/dt = 0 implies v is constant, but clearly by the initial condition v = ucos A. dw/dt =
—g implies w = —gt + C', but also by the initial condition w = —gt + usin A.

The equation dx /dt = v = ucos A along with the initial condition implies x(t) = u cos At.
The equation dy/dt = w = —gt + usin A along with the initial condition implies y(t) =
—gt?/2 + usin At + h.

Below we have plotted the trajectory of the ball in the cases 7/4, 7/3 and 7/6 respec-
tively.

47



120

100+

801

60

40

207 /

100 200 300 400 500

180
160
140
120
100
80
60
407
20

100 200 300 400

601

50+

40

30+

20

101/

100 200 300 400

(d) First, let T" be the time it takes for the ball to travel L feet horizontally. Using the
equation for z, we know that z(7) = wcos AT = L implies T' = L/ucos A. Then,
when the ball reaches this wall, we need the height of the ball to be at least H feet.
That is, we need y(T) > H. Now y(t) = —16t* + usin At + 3 implies we need y(T) =

—16L?/(u® cos*(A)) + Ltan A+ 3 > H.

(e) If L =350 and H = 10, then our inequality becomes

1,960, 000
(u? cos?(A))

+ 350tan A + 3 > 10.
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(f)

31.
(a)

(b)

()

Now if 4 = 110, then our inequality becomes

162
—_ tan(A) > 7.
cos2(A) +350tan(A) > 7

Solving this inequality, we conclude that 0.63 rad < A < 0.96 rad.
We rewrite the inequality in part (c) as

1,960, 000
u? ’

cos?(A)(350tan A — 7) >

In order to determine the minimum value necessary, we will maximize the function
on the left-hand side. Letting f(A) = cos?(A)(350tan A — 7), we see that f'(A) =
350 cos(2A) + 7sin(2A). Therefore, f'(A) = 0 implies tan(24) = —50. For 0 < A < /2,
we see that this occurs at A = 0.7954 radians. Substituting this value for A into the
inequality above, we conclude that

u? > 11426.24.

Therefore, the minimum velocity necessary is 106.89 mph and the optimal angle neces-
sary is 0.7954 radians.

The initial conditions are v(0) = ucos(A) and w(0) = usin(A). Therefore, the solutions
of the two equations are v(t) = ucos(A)e " and w(t) = —g/r + (usin(A) + g/r)e”".

Now z(t) = [wv(t) = Lcos(A)(1 —e™"), and

o) = [ = -2y T * M) (Ysin(a) + ) e

r 72 r 72

Below we show trajectories for the cases A = 7/4,7/3 and 7/6, respectively.
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(d) Let T be the time it takes the ball to go 350 feet horizontally. Then from above, we see
that e=7/% = (ucos(A) — 70) /ucos(A). At the same time, the height of the ball is given
by y(T) = —160T + 267 + 125usin(A) — (800 + busin(A))[(ucos(A) — 70)/u cos(A)].
Therefore, u and A must satisfy the inequality

ucos(A) — 70

> 10.
ucos(A) 0

800 In {

] +267 + 125usin(A) — (800 + Susin(A)) {W]

ucos(A)

32.

a) Solving equation (i), we have ¢/(x) = [(k? — 1/2 The positive answer is chosen since
(a) g eq : y Y)/y p
y is an increasing function of x.

(b) y = k*sin’t = dy/dt = 2k*sint cost. Substituting this into the equation in part (a),

we have
2k?sintcostdt  cost

dx sint’
Therefore, 2k?sin? tdt = du.

(c) Letting 6 = 2t, we have k?sin?(0/2)df = dx. Integrating both sides, we have z(f) =
k%0 — sin@)/2. Further, using the fact that y = k?sin®’t, we conclude that y =
k%sin?(0/2) = k(1 — cos(6)) /2.

20



(d) From part (c), we see that y/x = (1 —cos0)/(6 —sinf). If =1 and y = 2, the solution
of the equation is 6 ~ 1.401. Substituting that value of # into either of the equations in
part (c), we conclude that k ~ 2.193.

Section 2.4

1. Rewriting the equation as
Int 2t

/ —
VY T i3

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
0<t<d.

2. Rewriting the equation as

/
~0
Y=Y

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
0<t<4

3. By Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
/2 <t < 3m/2.

4. Rewriting the equation as
2t 3t
EEL
and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
—00 <t < —2.

y +

5. Rewriting the equation as
2t 3t?

-l e
and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
-2 <t <2

y +

6. Rewriting the equation as
, I cott
V! T e
and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
1<t <.
7. Using the fact that

t—vy 3t — 10y
= :> = —
/ 2t + 5y Ju (2t + 5y)?’

we see that the hypothesis of Theorem 2.4.2 are satisfied as long as 2t + 5y # 0.
8. Using the fact that

(142 o2\1/2 _ Yy
f=A--y)" = f,= (1— 12— g2)/2

we see that the hypothesis of Theorem 2.4.2 are satisfied as long as t? + y? < 1.
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9. Using the fact that

Inty|
1 —t2 492

1=+ — 2y In |ty

[ = = fy= y(1— 12 1+ 42)2 ’

we see that the hypothesis of Theorem 2.4.2 are satisfied as long as y,t # 0 and 1—t2+y? # 0.
10. Using the fact that

f _ (t2 + y2)3/2 — fy _ 3y(t2 + y2>1/2,
we see that the hypothesis of Theorem 2.4.2 are satisfied for all ¢t € R.
11. Using the fact that

1+ ¢ 14+ t2)(3 -2y
D R (B TGRS
3y —y 3y —y?)
we see that the hypothesis of Theorem 2.4.2 are satisfied as long as y # 0, 3.
12. Using the fact that

S

cot t)y 1
(cot £) S S
1+y (1+y)

we see that the hypothesis of Theorem 2.4.2 are satisfied as long as y # —1,t # nn for
n=0,1,2...

13. The equation is separable, ydy = —4tdt. Integrating both sides, we conclude that
y?/2 = —2t* + y2/2 for yo # 0. The solution is defined for y3 — 4t* > 0.

14. The equation is separable and can be written as dy/y? = 2tdt. Integrating both sides,
we arrive at the solution y = yo/(1 — yot?). For yo > 0, solutions exist as long as t* < 1/y.
For yo < 0, solutions exist for all t.

f=

15. The equation is separable and can be written as dy/y®> = —dt. Integrating both sides,
we arrive at the solution y = yo/(1/2ty2 + 1). Solutions exist as long as 2y2t + 1 > 0.

16. The equation is separable and can be written as ydy = t*dt/(1 + t3). Integrating both
sides, we arrive at the solution y = +(2In |1+ t3| + y3)"/2. The sign of the solution depends
on the sign of the initial data yy. Solutions exist as long as %111 |1+ 3| + y2 > 0; that is, as
long as y2 > —21In|1 + ¢*|. We can rewrite this inequality as [1 + ¢*| > ¢34/, In order for
the solution to exist, we need ¢ > —1 (since the term ¢?/(1 + 3) has a singularity at t = —1.
Therefore, we can conclude that our solution will exist for [e=3%/2 — 1]'/3 < t < 0.

17.
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0, then y = 0. If yp < 0, then y — —o0.

23

, then y — 0.

If yo > 0, then y — 0. If yo < 0, then y —

If yo > 0, then y — 3. If yo
19.

18.

If yo > 9, then y — oo. If yp <9

20.



If yo < y. = —0.019, then y — —oo. Otherwise, y is asymptotic to v/t — 1.

21.
(a)

23.

We know that the family of solutions given by equation (19) are solutions of this initial-
value problem. We want to determine if one of these passes through the point (1,1).
That is, we want to find o > 0 such that if y = [2(¢ — #0)]*/?, then (t,y) = (1,1). That
is, we need to find ¢y > 0 such that 1 = %(1 — to). But, the solution of this equation is
to=—1/2.

From the analysis in part (a), we find a solution passing through (2, 1) by setting to = 1/2.

Since we need yy = i[%@ — to)]?’/Q, we must have |y,| < [%]3/2-

First, it is clear that y;(2) = —1 = y2(2). Further,

, —t+[(t =277 —t+ (P +4(1—1)?
yl = —1 = 2 = 2

and t o —t4 (12— t2)2
I 7
Yo = 5 9 .
The function ¥, is a solution for ¢ > 2. The function ¥, is a solution for all ¢.

Theorem 2.4.2 requires that f and 0f/0y be continuous in a rectangle about the point
(to,y0) = (2,—1). Since f is not continuous if ¢ < 2 and y < —1, the hypothesis of
Theorem 2.4.2 are not satisfied.

If y = ct + ¢, then

, —t 4+ [(t+20)Y2  —t 4 (12 + det + 42)V?
2 2

Therefore, y satisfies the equation for t > —2c.
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(a) ¢(t) = e = ¢ = 2e?. Therefore, ¢/ — 2¢ = 0. Since (cp)’ = c¢/, we see that
(cp)’ — 2c¢ = 0. Therefore, c¢ is also a solution.

(b) ¢(t) = 1/t = ¢ = —1/t*. Therefore, ¢ + ¢* = 0. If y = ¢/t, then y = —c/t%
Therefore, v +y* = —c/t> 4+ ¢*/t* = 0 if and only if ¢ — ¢ = 0; that is, if c= 0 or ¢ = 1.

24. If y = ¢ satisfies ¢’ + p(t)p = 0, then y = co satisfies ' + p(t)y = c¢’ + cp(t)p =
(¢ + p(t)¢) = 0.
25. Let y = y1 + y2, then

v+ o)y =yi+ys + ) (Y1 +v2) = vy + p(t)ys + vh + p(t)ys = 0.

26.
(a)
v= i L woras o] = [ uatsras+ s
p(t) p(t) Je p(t)
Therefore, y; = 1/u(t) and yo = %) tto w(s)g(s)ds.
(b) For y; = 1/pu(t) = e /P e have
yi +p(t)y (e IPOE g p(t)e IPO® =
(c) For
1 t t
= —— s)g(s ds:e_fp(t)dt/efp s)ds
B=0 /to p(s)g(s) : 9(s)
we have
t
Yo+ p(t)ys = —p(t)e IO / e/ PO dg(s) ds + e IO el POty (¢)
to
t
+plt)e Sr0 [ e (s) ds — gt
to
27.

(a) If n =0, then y(t) = ce /PO If n = 1, then y(t) = ce™ JPHO-a®)dt,

(b) For n # 0,1, let v = y*~". Then

That is, v 4+ (1 — n)p(t)v = (1 — n)q(t).
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28. First, rewrite as
/‘l' 2 o 1 3
Y t?/ = t2y .

Here, n = 3. Therefore, let v = y*~3 = y~2. Making this substitution, we see that v satisfies
the equation

4 2
V= - = ——.
t 12

This equation is linear with integrating factor t=. Therefore, we have

1, 4 2

7w = w
which can be written as (t7v) = —2/t%. The solution of this equation is given by v =
(2 + ct®)/5t. Then, using the fact that y*> = 1/v, we conclude that y = 4+/5t/(2 + ct?).

29. First, rewrite as

Y —ry = —ky®.

Here, n = 2. Therefore, let v = y'~2? = y~!. Making this substitution, we see that v satisfies

the equation
v 4 rv = k.

This equation is linear with integrating factor e". Therefore, we have
(ertvl + T@rt’l}) — kert7

which can be written as (e"v)’ = ke™. The solution of this equation is given by v =
(k + cre™™)/r. Then, using the fact that y = 1/v, we conclude that y = r/(k + cre™").

30. Here n = 3. Therefore, v satisfies
v+ 2ev = 20.

This equation is linear with integrating factor 2. Its solution is given by v = (o +cee %) /e.
Then, using the fact that y*> = 1/v, we see that y = ++/¢/V o + cee2¢t.

31. Here n = 3. Therefore, v satisfies
v +2(Ccost+T)v = 2.

2(Tsint+Tt)

This equation is linear with integrating factor e . Therefore,

. / .
(62(F sin t+Tt)U) — 262(F sin t+Tt)

which implies
v = 26—2(Fsint+Tt) /eQ(Fsint—l—Tt) dt + Ce—Z(Fsint—i-Tt)‘

Then v = y~2 implies y = +/1/v.

32. The solution of the initial value problem 3y’ + 2y = 1is y = 1/2 + ce™*. For y(0) = 0,
we see that ¢ = —1/2. Therefore, y(t) = $(1 —e™) for 0 < ¢ < 1. Then y(1) = 3(1 — e72).
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= ce~?. The initial condition y(1) = 2(1—e~?)
2

Next, the solution of ¢ 4+2y = 0 is given by y
:(e?—1) and we conclude that y(t) = (e —1)e™*

implies ce™? = 1(1—e~2). Therefore, ¢ =
for ¢t > 1.

33. The solution of 3 + 2y = 0 with y(0) = 1 is given by y(t) = ¢ for 0 < ¢ < 1. Then
y(1) = e™2. Then, for t > 1, the solution of the equation 3 +y = 0 is y = ce~*. Since we
want y(1) = e72, we need ce™! = e™2. Therefore, ¢ = e¢~!. Therefore, y(t) = e le™t = 7171
for t > 1.

34.

(a) Multiplying the equation by edio P % we have
/
(ef,fo p(s) dsy> O

Integrating we have

t t s
el PPy (t) = yo + / ety (s) ds,
to

which implies

: t
y(t) = goe S0 4 / e~ 1P drg () ds,

to
(b) Assume p(t) > po > 0 for all t > ¢, and |g(t)| < M for all ¢t > t,. Therefore,
t t
/ p(s)ds > / pods = po(t — to)
to to

which implies
¢ o) ds < o figods _ mpoli—t) < 1 for t > ¢,

Also,

t t
/e_fsP(T)drg(S)dSS/ e_fsp(r)dr|g(5)|d8

to to

IN

t
/ e Pt V[ ds
t

0

e~Po (t—s) t

IN

Po to

[ 1 e—Po(t—to) ]
Po Po

M
M
Po

IN
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(c) Let p(t) =2t +1>1for all t >0 and let g(t) = e~**. Therefore, |g(t)| < 1 for all t > 0.
By the answer to part (a),

t
y(t) = e fg(28+1) ds +/ e~ f:(2r+1) dT€—82 ds
0

t
:e—(t2+t) +€—t2—t/ e ds
0

="
We see that y satisfies the property that y is bounded for all time ¢ > 0.

Section 2.5
1.

X 7

/'//

07702 04 06 08 1 12 14 16 18 2
y

The only equilibrium point is y* = 0. Since f’(0) = a > 0, the equilibrium point is unstable.
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51 /
//
47 /
f 34
2,
\\ %
) 1 1 2
y

The equilibrium points are y* = 0, —a/b. y* = 0 is unstable and y* = —a/b is asymptotically
stable since f'(—a/b) < 0.

=2 = 0 1 2
— L
— L
2 //
_3 -
3.
6 /
54 //"’
/
43 /
f 39 /
//
//
2 -
/
1,
— T
0 05 1 —15 2 25 3
y

The equilibrium points are y* = 0,1,2. Since f’(0), f’(2) > 0, those equilibrium point are
unstable. Since f’(1) < 0, y* = 1 is asymptotically stable.
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2 a I >

The only equilibrium point is y* = 0. Since f’(0) < 0, the equilibrium point is asymptotically
stable.

|
o
o
|

The only equilibrium point is y* = 0. Since f'(0) < 0, the equilibrium point is asymptotically
stable.
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7.

(a) The function f(y) = k(1 —y)? =0 = y = 1. Therefore, y* = 1 is the only critical
point.

(b)

2
y

(c) This is a separable equation with solution y(t) = [yo + (1 — yo)kt]/[1 + (1 — yo)kt]. If
Yo < 1, then y — 1 as t — oo. If yy > 1, then the denominator will go to zero at some
finite time 7" = 1/(yo — 1). Therefore, the solution will go towards at infinity.

|
N
|
=
e
N<
w
IN




The only equilibrium point is y* = 0. Since f’(0) < 0. The equilibrium point is semistable.

N

yo TN~

—21

—34

12

The equilibrium points are y* = 0,1, —1. Since f'(—1) < 0, y = —1 is asymptotically stable.
Since f'(1) > 0, y = 1 is unstable. The equilibrium point y = 0 is semistable.

10.
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The equilibrium points are y* = 0,1, —1. Since f'(—1), f’(1) < 0, the equilibrium points
y = 1,—1 are asymptotically stable. Since f’(0) > 0, the equilibrium point y = 0 is
unstable.

-2 = 0 1 2
\t

—14

—2

11.

0.6
0.44

0.2

01" 02 04 06 08 1 12 14 16 1.8 2
oo\
_—

The equilibrium points are y* = 0,5?/a®. Since f’(0) < 0, the equilibrium point y = 0 is
asymptotically stable. Since f/(b*/a?) > 0, the equilibrium point y = b*/a? is unstable.
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2.5/
%

2 1 0 1 2

12.

-101

The equilibrium points are y* = 0,2, —2. The equilibrium point y = 0 is semistable. Since
1'(=2) > 0, the equilibrium point y = —2 is unstable. Since f’(2) < 0, the equilibrium point
y = 2 is asymptotically stable.

13.
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14.

(a)

2 T 0 ‘ ‘
t
-1

The equation is separable. Using partial fractions, it can be written as

1 1/K )
S L) dy = rdt.
<y 1-y/K

Integrating both sides and using the initial condition yo = K/3, we know the solution y
satisfies

In

_y
1—y/K 2
To find the time 7 such that y = 2y, = 2K/3, we substitute y = 2K/3 and t = 7

into the equation above. Using the properties of logarithm functions, we conclude that
7= (In4)/r. If r = 0.025, then 7 ~ 55.452 years.

=rt+1In

Using the analysis from part (a), we know the general solution satisfies

In =rt+ec.

_ Yy
1—y/K
The initial condition yo = aK implies ¢ = In|aK /(1 — «)|. Therefore,

In =rt+1In

_ Yy
1-—y/K 1—al
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In order to find the time 7" at which y(7") = BK, we use the equation above. We conclude
that

T =(1/r)In[(1 —a)/a(l = F)|.

15.
(a) Below we sketch the graph of f forr =1 = K.

047

0.2—/ A
02 04 06 0, Y 12 14 16 18 2

0.2 ]
0.4 1
0.6
0.8 1

-1+
1.2
1.4 1

The critical points occur at y* = 0, K. Since f'(0) > 0, y* = 0 is unstable. Since
f(K) <0, y* = K is asymptotically stable.

(b) We calculate y”. Using the chain rule, we see that

-se(3)-]

We see that 3y’ = 0 when 3’ = 0 (meaning y = 0, K') or when In(K/y) — 1 = 0, meaning
y = K/e. Looking at the sign of " in the intervals (0, K/e) and (K /e, K), we conclude
that y is concave up in the interval (0, K/e) and concave down in the interval (K /e, K).

16.

(a) Using the substitution u = In(y/K) and differentiating both sides with respect to ¢, we
conclude that u' = 3’ /y. Substitution into the Gompertz equation yields v’ = —ru. The
solution of this equation is u = uge™". Therefore,

= = explIn(yo/K)e ™.

(b) For K =80.5 x 10°%, yo/K = 0.25 and r = 0.71, we conclude that y(2) = 57.58 x 10°.

(c) Solving the equation in part (a) for ¢, we see that

1ln[1n(y/K)}

t=—

r In(yo/K)

Plugging in the given values, we conclude that 7 = 2.21 years.
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17.

(b) Consider f(y) = —0.25(1 —y)[1 — (y/4)]y. We need to differentiate f(y) with respect to
y. We see that

Fly) = —0.25 (ZyQ - §y + 1) :

2
o+ V13
5

(c) Since this is a separable equation, we can integrate the equation as follows:

dy N
/(1—y)(1_(y/4))y —/ 0.25dt.

Using partial fractions, we can rewrite the left-hand side as

Therefore, f'(y) = 0 implies 3y*> — 10y +4=0or y =

1 _4/3 “112 1
-9l —-wMA4))y 1-y 1-(yH4) vy
Therefore,
dy _ 4 n|l— 1n — n

If y(0) = 2, then y(t) — 4 as t — oo and moreover, 1 < y(t) < 4 for all t. Therefore, for
1 <yo <4,
4 1 4 1
L=yl I~ (y/4)] 4 Iyl = —3 In(y — 1)+ 3 In(L — (3/4)) + In(y)
1— (y/4)'/?
(MR

(y —1)*3

We conclude that
y(1— (y/4))1/3 — (025t
G-
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If y(0) = 2, then C' = 22/3. Then if ¢t = 5, we conclude that y ~ 3.625. Similarly, for
Yo > 4, we conclude that
y((y/4) — 1) —0.25¢

PR

(d) Consider the equation
y(1 - (y/4))1/3 — (025t
="
found in part (c). If 4y = 2, then C' = 2%/3. Letting y(¢) = 3.95 and solving for ¢, we see
that ¢ ~ 7.97. Similarly, using the equation found in part (c) for yo > 4, we see that if

Yo = 6, then y < 4.05 for ¢t < 7.97. For all initial data 2 < yy < 6, the conclusion also
holds.

18.

(a) The surface area of the cone is given by
S =mavh? +a? +ma® = ma*(\/(h/a)2 +1+1)
ma’*h 3
=2 S (Ve T 41)
— o (VjaP+1+

_ a2\ *? [/ 3a\??
- 3 7h

30\ %3
= =) v

Therefore, if the rate of evaporation is proportional to the surface area, then rate out =
am(3a/mh)?3V?/3, Therefore,

av
dt

— rate in — rate out

2/3 2/3
=k—arm (%) (Ea2h)
mh 3

(b) The equilibrium volume can be found by setting dV/dt = 0. We see that the equilibrium

volume is
v (& % (wh
- \ar 3a )

To find the equilibrium height, we use the fact that the height and radius of the conical
pond maintain a constant ratio. Therefore, if h,., a. represent the equilibrium values for
the h and a, we must have h./a. = h/a. Further, we notice that the equilibrium volume

can be written as L2
V= T i ﬁ ﬁ = Iag hz’
3 \ar T a 3
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where h, = (k/am)'/?(h/a) and a. = (kar)'/2. Since f'(V) = —2an(3a/mh)*3V 13 <
0, the equilibrium is asymptotically stable.

(¢) In order to guarantee that the pond does not overflow, we need the rate of water in to
be less than or equal to the rate of water out. Therefore, we need k — ama® < 0.

(a) The rate of increase of the volume is given by

% =k — aar/2gh.
Since the cross-section is constant, dV/dt = Adh/dt. Therefore,

I~ (k— aay/298)/A.

(b) Setting dh/dt = 0, we conclude that the equilibrium height of water is h, = - (L)Q.
Since f’(he) < 0, the equilibrium height is stable.

20.

(a) The equilibrium points are y* = 0, 1. since f’(0) = a > 0, the equilibrium solution y* = 0
is unstable. Since f’(1) = —a < 0, the equilibrium solution y* = 1 is asymptotically
stable.

(b) The equation is separable. The solution is given by
at
Yo€
) = ———.
() 1 —yo + yoe!
We see that lim; . y(t) = 1.
21.

(a) The solution of the separable equation is y(t) = yoe .

(b) Using the result from part (a), we see that dz/dt = —axyee P, This equation is sepa-
rable with solution z(t) = zgexp[—ayo(1 — e P /4.

(c) Ast — 00, y — 0 and = — xgexp(—ayy/f).

22.
(a) Letting ' = d/dt, we have
, nx' —an’

z =
n2

—Bnx — unz + vBx* + punx
n2
x T\ 2
= A+ (7)
= —Bz+vpz? = —F2(1 —vz).
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(b)

(c)

First, we rewrite the equation as

2+ Bz = fr’.
This is a Bernoulli equation with n = 2. Let w = 2!™ = z7!. Then, our equation can
be written as

w' — Bw = —f.

This is a linear equation with solution w = v + ce”. Then, using the fact that z = 1/w,
we see that z = 1/(v + cef'). Finally, the initial condition z(0) = 1 implies ¢ = 1 — v.
Therefore, 2(t) = 1/(v + (1 — v)e"?).

Evaluating z(20) for v = = 1/8, we conclude that z(20) = 0.0927.

The critical points occur when a —y? = 0. If a < 0, there are no critical points. If a = 0,
then y* = 0 is the only critical point. If @ > 0, then y* = +4/a are the two critical
points.

We note that f’(y) = —2y. Therefore, f'(y/a) < 0 which implies that /a is asymptot-
ically stable; f’(—+/a) > 0 which implies —4/a is unstable; the behavior of f’ around
y* = 0 implies that y* = 0 is semistable.

Below, we graph solutions in the case a = 1, a = 0 and a = —1 respectively.

y()
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24.

2 =

\
y(t)\
T

0

T

-2

-3

(a) First, for a < 0, the only critical point is y* = 0. Second, for a = 0, the only critical point

is y* = 0. Third, for a > 0, the critical points are at y* = 0, +y/a. Here, f'(y) = a — 3y>.
If a < 0,then f'(y) < 0 for all y, and, therefore, y* = 0 will be asymptotically stable.
If a = 0, then f/(0) = 0. From the behavior on either side of y* = 0, we see that
y* = 0 will be asymptotically stable. If a > 0, then f’(0) = a > 0 which implies that
y* = 0 is unstable for @ > 0. Further, f'(£/a) = —2a < 0. Therefore, y* = +\/a are
asymptotically stable for a > 0.

(b) Below we sketch solution curves for a = 1,0, —1, respectively.

N
——

y(®
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25.

(a) For a < 0, the critical points are y* = 0,a. Since f'(y) = a — 2y, f(0) = a < 0 and
f'(a) = —a > 0. Therefore, y* = 0 is asymptotically stable and y* = a is unstable for
a < 0. For a = 0, the only critical point is y* = 0. which is semistable since f(y) = —y?
is concave down. For a > 0, the critical points are y* = 0,a. Since f'(0) = a > 0 and
f'(a) = —a < 0, the critical point y* = 0 is unstable while the critical point y* = a is
asymptotically stable for a > 0.

(b) Below we sketch solution curves for a = 1,0, —1, respectively.
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26.
(a)

Since the critical points are z* = p,q, we will look at their stability. Since f'(z) =
—aq — ap+2ax?, we see that f'(p) = a(2p® — ¢ —p) and f'(q) = a(2¢* — ¢ — p). Now if
p > q, then —p < —q, and, therefore, f'(q) = a(2¢°—q—p) < a(2¢*°—2q) = 2aq(q—1) < 0
since 0 < g < 1. Therefore, if p > ¢, f'(¢) < 0, and, therefore, z* = ¢ is asymptotically
stable. Similarly, if p < ¢, then x* = p is asymptotically stable, and therefore, we can
conclude that z(t) — min{p, ¢} as t — oc.

The equation is separable. It can be solved by using partial fractions as follows. We can

rewrite the equation as
1/(q — 1/(p —
( [la=p) , 1/ Q)) de = adt,
p—z q—z

which implies
p—
q—

In = (p—q)at + C.

The initial condition xy = 0 implies C' = In |p/q|, and, therefore,

M'

pg—o)| ~ PO

In

Applying the exponential function and simplifying, we conclude that

_ pg(e®0ot —1)

(t) =

pe(p—Q)at —q

In this case, z* = p is the only critical point. Since f(x) = a(p — z)? is concave up, we
conclude that x* = p is semistable. Further, if o = 0, we can conclude that x — p as

t — o0.

This equation is separable. Its solution is given by

2
t
o(t) = 22
pat + 1

I0)



Section 2.6

1. Here M(z,y) =22 + 3 and N(z,y) = 2y — 2. Since M, = N, = 0, the equation is exact.
Since ¥, = M = 2x + 3, to solve for 1, we integrate M with respect to z. We conclude that
Y = a® + 3z + h(y). Then ¢, = h'(y) = N = 2y — 2 implies h(y) = y* — 2y. Therefore,
Y(r,y) =2® +3x+y* -2y =c.

2. Here M(z,y) = 2z + 4y and N(z,y) = 2z — 2y. Since M, # N,, the equation is not
exact.

3. Here M(z,y) = 32® — 22y + 2 and N(z,y) = 6y* — 2? + 3. Since M, = —2z = N,, the
equation is exact. Since 1, = M = 322 —2zy+2, to solve for 1, we integrate M with respect
to z. We conclude that ¢ = 2® — 2%y +2x+ h(y). Then ¢, = —2*+h' (y) = N = 6y* —2?+3
implies 7/ (y) = 6y*+3. Therefore, h(y) = 2y>+3y and Y (x,y) = 23 —2?y+22x+2y3 +3y = c.

/
/
s

4. Here M(z,y) = 2xy* + 2y and N(z,y) = 22*y + 2z. Since M, = 4xy + 2 = N,, the
equation is exact. Since 1), = M = 2xy? + 2y, to solve for v, we integrate M with respect to
x. We conclude that ¢ = 2%¢y? + 22y + h(y). Then ¢, = 222y + 2z 4+ W' (y) = N = 222y + 2z
implies /' (y) = 0. Therefore, h(y) = C and ¢ (z,y) = 2%y* + 22y = c.
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5. Here M(z,y) = ax+by and N(z,y) = bx+cy. Since M, = b = N,, the equation is exact.
Since ¢, = M = ax + by, to solve for ¥, we integrate M with respect to z. We conclude that
Y = ax?/2+bxy+ h(y). Then ¢, = bz + ' (y) = N = bz + cy implies 1/(y) = cy. Therefore,
h(y) = cy?/2 and ¢ (z,y) = ax?®/2 + bwy + cy?*/2 = c.

6. Here M = ax — by and N = bx — cy. Since M, = —b and N, = b, the equation is not
exact.

7. Here M(x,y) = e*siny — 2ysinx and N(z,y) = e” cosy + 2cosz. Since M, = e” cosy —
sinx = N,, the equation is exact. Since ¥, = M = e*siny — 2ysinx, to solve for ¢, we
integrate M with respect to x. We conclude that ¢ = e*siny + 2ycosz + h(y). Then
Y, = e cosy+2cosxz+h'(y) = N = e” cosy+2cosx implies h'(y) = 0. Therefore, h(y) = C
and (z,y) = e*siny + 2y cosx = c.
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8. Here M = e*siny + 3y and N = —3x + €*siny. Therefore, M, = e”cosy + 3 and
N, = =3+ e"siny. Since M, # N,, therefore, the equation is not exact.

9. Here M(x,y) = ye®™ cos(2z) — 2e™ sin(2x) 4+ 2z and N(z,y) = xe™ cos(2z) — 3. Since
M, = e™ cos(2z)+zye™ cos(2x)—2ze™ sin(2x) = N,, the equation is exact. Since ¢, = M =
ye®¥ cos(2z) —2e™ sin(2z) + 2z, to solve for 1), we integrate M with respect to z. We conclude
that ¢ = €™ cos(2z) + 2% + h(y). Then ¢, = ze™ cos(2x) + h'(y) = N = ze™ cos(2x) — 3
implies h'(y) = —3. Therefore, h(y) = —3y and ¥ (z,y) = €™ cos(2z) + 2* — 3y = c.

~__ 2 —
\_y/‘,/\'/

TS

10. Here M(z,y) = y/x + 6z and N(z,y) = In(x) — 2. Since M, = 1/x = N,, the equation
is exact. Since 1, = M = y/x + 6z, to solve for 1), we integrate M with respect to x. We
conclude that ¢ = yIn(z) 4+ 32> + h(y). Then ¢, = In(z) + h'(y) = N = In(z) — 2 implies
h'(y) = —2. Therefore, h(y) = —2y and ¥(x,y) = yIn(z) 4+ 32? — 2y = c.
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11. Here M(z,y) = xIn(y) + 2y and N(z,y) = yln(zr) + zy. Since M, = z/y + = and
N, = y/x + y, we conclude that the equation is not exact.

12. Here M (z,y) = z/(22+4?)*? and N(z,y) = y/(22+y?)*/%. Since M,, = N,, the equation
is exact. Since 1, = M = x/(2? 4+ y*)/2, to solve for 1, we integrate M with respect to z.
We conclude that ¢ = —1/(z% + y*)¥/? + h(y). Then v, = y/(2? + 3?32 + K (y) = N =
y/(x? 4+ y?)3? implies h'(y) = 0. Therefore, h(y) = 0 and ¢(z,y) = —1/(z? + y*)'/? = ¢

which implies that ¥ (z,y) = (2% +3*) = c.
> ///

\X
13. Here M(z,y) = 2z —y and N(z,y) = 2y — x. Therefore, M, = N, = —1 which

implies that the equation is exact. Integrating M with respect to x, we conclude that
Y =a2? —xy+ h(y). Then ¢, = —x+ W' (y) = N = 2y — 2 implies 1/(y) = 2y. Therefore,
h(y) = y? and we conclude that v = 22 —xy+y? = C. The initial condition y(1) = 3 implies

1
¢ = 7. Therefore, 2> — xy + y*> = 7. Solving for y, we conclude that y = 3 ® + V28 — SxQ] :
Therefore, the solution is valid for 32% < 28.

14. Here M(z,y) = 92 +y — 1 and N(z,y) = —4y + x. Therefore, M, = N, = 1 which
implies that the equation is exact. Integrating M with respect to x, we conclude that
Y =323+ 2y — 2z + h(y). Then ¢, = x + h'(y) = N = —4y + x implies I/'(y) = —4y.
Therefore, h(y) = —2y? and we conclude that ¢ = 323 + 2y — x — 2y* = C. The initial
condition y(1) = 0 implies ¢ = 2. Therefore, 32% + zy — z — 2y*> = 2. Solving for y, we
conclude that y = [z — (242® + 2® — 8z — 16)'/%]/4. The solution is valid for z > 0.9846.

Y

S

\
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15. Here M(z,y) = ay® 4+ ba’y and N(z,y) = 2* + zy. Therefore, M, = 2zy + bz and
N, = 322 + 2xy. In order for the equation to be exact, we need b = c. Taking this value
for b, we integrating M with respect to z. We conclude that ¢ = 2?y?/2 + 23y + h(y).
Then ¢, = 2%y + 2* + W/(y) = N = 2 + 2%y implies h'(y) = 0. Therefore, h(y) = C and
P(z,y) = v*y*/2 + 23y = C. That is, the solution is given implicitly as z%y*/2 + 2%y = c.
16. Here M(z,y) = ye*¥ + x and N(z,y) = bxe*¥. Then M, = e**¥ + 2zye**¥ and
N, = be?® + 2bzye*¥. The equation will be exact as long as b = 1. Integrating M with
respect to x, we conclude that ¢ = €2*¥ /2422 /24+h(y). Then ¢, = ze**¥+h'(y) = N = ze*™¥
implies A'(y) = 0. Therefore, h(y) = 0 and we conclude that the solution is given implicitly
by the equation e**¥ + 22 = C.

17. We notice that ¢(z,y) = f(x) + g(y). Therefore, ¢, = f'(x) and ¢, = ¢'(y). That is,

Yp = M(z,yo) Yy = N(zo,y).
Furthermore, 1., = M, and 1, = N,. Based on the hypothesis, ¢, = 1, and M, = N,.
18. We notice that (M (z)), = 0= (N(y)),. Therefore, the equation is exact.

19. Here M(z,y) = 2?y® and N(x,y) = 2 + xy*. Therefore, M, = 32%y* and N, = 1 + y>.
We see that the equation is not exact. Now, multiplying the equation by u(z,y) = 1/zy3,
the equation becomes

zdz + (1+y®)/y’dy = 0.

Now we see that for this equation M = z and N = (1 + y?)/y>. Therefore, M, = 0 = N,.
Integrating M with respect to z, we see that ¢ = 22/2 + h(y). Further, ¢, = h/(y) = N =
(14+4?)/y® = 1/y>+1/y. Therefore, h(y) = —1/2y*+In(y) and we conclude that the solution
of the equation is given implicitly by 2% — 1/y* + 21In(y) = C.

20. Multiplying the equation by pu(z,y) = ye®, the equation becomes
(e siny — 2y sinx)dx + (e” cosy + 2 cos x)dy = 0.

Now we see that for this equation M = e*sin y—2ysinx and N = e* cos y+2 cos x. Therefore,
M, = e®cosy — 2sinx = N,. Integrating M with respect to x, we see that ¢ = e*siny +
2y cosx + h(y). Further, ¢, = e” cosy + 2cosx + W' (y) = N = e” cosy + 2 cos x. Therefore,
h(y) = 0 and we conclude that the solution of the equation is given implicitly by e”siny +
2ycosx = C.
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21. Multiplying the equation by p(z,y) =y, the equation becomes
y?dx + (2xy — y*e¥)dy = 0.

Now we see that for this equation M = y* and N = 2zy — y?e¥. Therefore, M, = 2y = N,.
Integrating M with respect to x, we see that 1 = xy? + h(y). Further, ¢, = 2zy + h'(y) =
N = 2xy — y?e¥. Therefore, h'(y) = —y?e¥ which implies that h(y) = —e¥(y* — 2y + 2), and
we conclude that the solution of the equation is given implicitly by zy?* —e¥(y? — 2y +2) = C.

=
//
///y/f

2 ] 1 2
X
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22. Multiplying the equation by u(z,y) = ze®, the equation becomes
(2% + 2z)e” sin ydz + 2" cos ydy = 0.

Now we see that for this equation M, = (22 +2z)e” cosy = N,. Integrating M with respect
to z, we see that ¢ = z?e"siny + h(y). Further, ¢, = a?e*cosy + h'(y) = N = z2e” cosy.
Therefore, h'(y) = 0 which implies that the solution of the equation is given implicitly by

r2e®siny = C.
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23. Suppose u is an integrating factor which will make the equation exact. Then multiplying
the equation by u, we have
uMdx + pNdy = 0.

Then we need (uM), = (uN),. That is, we need p,M + puM, = p, N + uN,. Then we
rewrite the equation as u(N, — M,) = p, M — p1,N. Suppose p does not depend on z. Then
i = 0. Therefore, (N, — M,) = p,M. Using the assumption that (N, — M,)/M = Q(y),
we can find an integrating factor p by choosing p which satisfies p,/p0 = Q). We conclude
that u(y) = exp [ Q(y) dy is an integrating factor of the differential equation.

24. Suppose i is an integrating factor which will make the equation exact. Then multiplying
the equation by u, we have
uMdz + pNdy = 0.

Then we need (udM), = (uN),. That is, we need p,M + pM, = p, N + pN,. Then we
rewrite the equation as u(N, — M,) = p,M — 1, N. By the given assumption, we need
p to satisfy pR(zM — yN) = p,M — p,N. This equation is satisfied if y, = (uz)R and
ty = (py)R. Consider = p(zy). Then p, = p'y and p, = p'x where ' = d/dz for z = xy.
Therefore, we need to choose i to satisfy p/ = pR. This equation is separable with solution
p = exp([ R(z) dz).

25. Since (M, — N,)/N = 3 is a function of = only, we know that u = €% is an integrating
factor for this equation. Multiplying the equation by u, we have

e (3x%y + 2xy + y)dx + €3 (2% + y*)dy = 0.

Then M, = €3*(32% 4+ 2z + 3y*) = N,. Therefore, this new equation is exact. Integrating M
with respect to z, we conclude that ¢ = (2?y + y*/3)e3* + h(y). Then ¢, = (2% + y?)e>* +
h'(y) = N = &3 (2% + y*). Therefore, h/(y) = 0 and we conclude that the solution is given
implicitly by (3z%y + ¢*)e’* = c.

82



26. Since (M, — N,)/N = —1 is a function of x only, we know that 1 = e”* is an integrating
factor for this equation. Multiplying the equation by u, we have

(e —e® —ye ")dr + e “dy = 0.

Then M, = —e™® = N,. Therefore, this new equation is exact. Integrating M with respect
to x, we conclude that ¢ = —e ™ —e®* +ye ™ + h(y). Then ¢, = e * + 1 (y) = N =e™".
Therefore, h'(y) = 0 and we conclude that the solution is given implicitly by —e™* — e* +
ye ¥ =c.

F2

27. Since (N, — M,)/M = 1/y is a function of y only, we know that u(y) = e/ /v% = y is
an integrating factor for this equation. Multiplying the equation by pu, we have

ydx + (x — ysiny)dy = 0.

Then for this equation, M, =1 = N,. Therefore, this new equation is exact. Integrating M
with respect to z, we conclude that ¢ = zy + h(y). Then ¢, =z + W' (y) = N =z — ysiny.
Therefore, h'(y) = —ysiny which implies that h(y) = —siny + y cosy, and we conclude that
the solution is given implicitly by xy — siny + ycosy = C.
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28. Since (N, —M,)/M = (2y—1)/y is a function of y only, we know that u(y) = el 2-1/vdv =
e? /y is an integrating factor for this equation. Multiplying the equation by u, we have

e*dr + (2ze* — 1/y)dy = 0.

Then for this equation, M, = N,. Therefore, this new equation is exact. Integrating M with
respect to x, we conclude that 1 = ze® 4+ h(y). Then ¢, = 2ze* + ' (y) = N = 2ze* —1/y.
Therefore, h'(y) = —1/y which implies that h(y) = —In(y), and we conclude that the solution

is given implicitly by ze? — In(y) = C.
\\\

29. Since (N, — M,)/M = cot(y) is a function of y only, we know that u(y) = e/ W& =
sin(y) is an integrating factor for this equation. Multiplying the equation by p, we have

e’ sinydx + (e” cosy + 2y)dy = 0.

Then for this equation, M, = N,. Therefore, this new equation is exact. Integrating M
with respect to x, we conclude that ¢ = e”siny + h(y). Then ¢, = e*cosy + h'(y) = N =
e® cosy + 2y. Therefore, h'(y) = 2y which implies that h(y) = y?, and we conclude that the
solution is given implicitly by e®siny + y? = C.
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30. Since (N, — M,)/M = 2/y is a function of y only, we know that u(y) = e/ /% = 42 is
an integrating factor for this equation. Multiplying the equation by u, we have

(42® + 3y)dx + (3x + 4y*)dy = 0.

Then for this equation, M, = N,. Therefore, this new equation is exact. Integrating M with
respect to ;, we conclude that ¢ = 2* + 3zy + h(y). Then ¢, = 3z + h/(y) = N = 3z + 4y°>.
Therefore, h'(y) = 4y which implies that h(y) = y*, and we conclude that the solution is
given implicitly by z* + 3zy + y* = C.

g - N

Xk
o

N

31. Since (N, — M,)/(xM — yN) = 1/zy is a function of zy only, we know that u(zy) =
e/ 1/7ydy — gy is an integrating factor for this equation. Multiplying the equation by p, we
have

(32%y + 6x)dz + (2° + 3y*)dy = 0.

Then for this equation, M, = N,. Therefore, this new equation is exact. Integrating M with
respect to z, we conclude that ¢ = z*y + 32? + h(y). Then ¢, = 23+ 1/(y) = N = 2* + 3y°.
Therefore, h'(y) = 3y? which implies that h(y) = 3?, and we conclude that the solution is
given implicitly by z3y + 322 + 3 = C.
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32. Using the integrating factor u = [zy(2z + y)] ™!, this equation can be rewritten as

2 2 J 1 1 d 0
[EJF 2x+y} v [gj+ 2w+y} e
Integrating M with respect to x, we see that ¢ = 2In |z| + In |22 + y| + h(y). Then ¢, =
2z +y) '+ h(y) = N = 2z +y)"' + 1/y. Therefore, h'(y) = 1/y which implies that
h(y) = In|y|. Therefore, ¥ = 2In|z|+ In|2z + y| + In|y| = C. Applying the exponential
function, we conclude that the solution is given implicitly be 223y + 2%y* = C.

Section 2.7

1. The Euler formula is y,+1 = y, + h(3 + t, — y,) in which t,, = tq + nh. Since t; = 0, we
have y,11 = yn(1 — h) + 3h + nh?.

(a) For h = 0.05, the Euler approximations for y,, at n = 2,4,6,8 are given by

1.1975, 1.38549, 1.56491, 1.73658
(b) For h = 0.025, the Euler approximations for y, at n = 4,8,12,16 are given by
1.19631, 1.38335, 1.56200, 1.73308

2. The Euler formula is 4,41 = y, + h(5t, — 3\/¥n) in which ¢, = t; + nh. Since t, = 0, we
have y,11 = yn + 5nh? — 3hy/yn with yo = 2.

(a) For h = 0.05, the Euler approximations for y,, at n = 2,4,6,8 are given by

1.59980, 1.29288, 1.07242, 0.930175.
(b) For h = 0.025, the Euler approximations for y, at n = 4,8,12,16 are given by

1.61124, 1.31361, 1.10012, 0.962552

3. The Euler formula is y,+1 = v, + h(2y, — 3t,) in which ¢, = to + nh. Since t; = 0, we
have Y41 = yn(1 + 2h) — 3nh>.
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(a) For h = 0.05, the Euler approximations for y,, at n = 2,4,6,8 are given by

1.2025, 1.41603, 1.64289, 1.88590

(b) For h = 0.025, the Euler approximations for y, at n = 4,8,12,16 are given by
1.20388, 1.41936, 1.64896, 1.89572
4. The Euler formula is y,+1 = y, + h(2t, + e "¥) in which ¢, = tq + nh. Since ty = 0, we
have 9,41 = yn + 2nh® + he—nhy,.
(a) For h = 0.05, the Euler approximations for y, at n = 2,4,6,8 are given by
1.10244, 1.21426, 1.33484, 1.46399

(b) For h = 0.025, the Euler approximations for y, at n = 4,8,12,16 are given by
1.10365, 1.21656, 1.33817, 1.46832

5. The Euler formula is y,.1 = yn + h(y2 + 2t,y,)/(3 + 2) in which ¢, = ty + nh. Since
to = 0, we have y,+1 = y, + h(y2 + 2nhy,)/(3 + n*h?).

(a) For h = 0.05, the Euler approximations for y, at n = 2,4,6,8 are given by

0.509239, 0.522187, 0.539023, 0.559936

(b) For h = 0.025, the Euler approximations for y,, at n = 4,8,12,16 are given by
0.509701, 0.523155, 0.540550, 0.562089

6. The Euler formula is y,,+1 = y, + h(t2 — y?) sin(y,) in which ¢, = to + nh. Since ¢ty = 0,

we have y, 11 = y, + h(n?h* — y2) sin(y,).

(a) For h = 0.05, the Euler approximations for y, at n = 2,4,6,8 are given by

—0.920498, —0.857538, —0.808030, —0.770038
(b) For h = 0.025, the Euler approximations for y, at n = 4,8,12, 16 are given by
—0.922575, —0.860923, —0.812300, —0.774965

7. The Euler formula is y,,4+1 = v, + h(0.5 — t,, + 2y,,) in which ¢, = ¢ty + nh. Since ¢y = 0,
we have y,11 = ¥, + h(0.5 — nh + 2y,).

(a) For h = 0.025, the Euler approximations for y, at n = 20,40, 60,80 are given by

2.90330, 7.53999, 19.4292, 50.5614
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(b) For h = 0.0125, the Euler approximations for y, at n = 40,80, 120, 160 are given by
2.93506, 7.70957, 20.1081, 52.9779

8. The Euler formula is 4,41 = yn + h(5t, — 3\/Y,) in which ¢,, = to + nh. Since t, = 0, we
have y,11 = yn + h(5nh — 3\/¥n).

(a) For h = 0.025, the Euler approximations for y, at n = 20, 40,60, 80 are given by

0.891830, 1.25225, 2.37818, 4.07257
(b) For h = 0.0125, the Euler approximations for y,, at n = 40,80, 120, 160 are given by
0.908902, 1.26872, 2.39336, 4.08799

9. The Euler formula is y,,1 = y, + hy/t,, + Yy, in which ¢,, =ty + nh. Since to = 0, we have

Yni1l = Yn + hv/nh + y,.

(a) For h = 0.025, the Euler approximations for y, at n = 20, 40,60, 80 are given by

3.95713, 5.09853, 6.41548, 7.90174

(b) For h = 0.0125, the Euler approximations for y, at n = 40,80, 120, 160 are given by
3.95965, 5.10371, 6.42343, 7.91255

10. The Euler formula is y, 11 = y, + h(2t,, + e %) in which ¢,, = to + nh. Since ty = 0, we

have yp41 = yn + h(2nh + e "W).

(a) For h = 0.025, the Euler approximations for y, at n = 20, 40,60, 80 are given by
1.60729, 2.46830, 3.72167, 5.45963

(b) For h = 0.0125, the Euler approximations for y, at n = 40,80, 120, 160 are given by
1.60996, 2.47460, 3.73356, 5.47774

11. The Euler formula is y,41 = yn + h(4 — tayn)/(1 + %2) in which ¢, = to + nh. Since

to = 0, we have y,11 =y, + h(4 — nhy,) /(1 + y2).

(a) For h = 0.025, the Euler approximations for y, at n = 20,40, 60, 80 are given by

—1.45865, —0.217545, 1.05715, 1.41487

(b) For h = 0.0125, the Euler approximations for y, at n = 40,80, 120, 160 are given by

—1.45322, —0.180813, 1.05903, 1.41244
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12. The Euler formula is y,+1 = yn + h(y2 + 2t,y,)/(3 4+ t2) in which ¢,, = o + nh. Since
to = 0, we have y,, 11 =y, + h(y2 + 2nhy,) /(3 + n*h?).

(a) For h = 0.025, the Euler approximations for y, at n = 20, 40,60, 80 are given by

0.587987, 0.791589, 1.14743, 1.70973

(b) For h = 0.0125, the Euler approximations for y, at n = 40,80, 120, 160 are given by

0.589440, 0.795758, 1.15693, 1.72955

13. The Euler formula is
Ynt+1 = Yn + h(l —tn + 4yn)

in which t,, =ty + nh. Since to = 0, we can write
Yn+1 = Yn + h — nhz + 4hyn
with 1o = 1. With h = 0.01, a total of 200 iterations is necessary to reach ¢t = 2. With

h = 0.001, a total of 2000 iterations is necessary.
14. We will use the first three terms in equation (12),

Oltsr) = 0lta) + Tl oft)Jh + 6(1) 2.

Letting h = 0.1, then the approximation is given by
h?
Ynt1 = Yn + h(1 —t, + 4y,) + ?(3 — 4t,, + 16y,,).
Therefore,
2

0.1
y1=140.1(1 = 0+4(1)) + =5-(3 = 4(0) + 16(1)) = 1+ 0.5 +.095 = 1.595.

Then, repeating this argument for y,, we conclude that y, = 2.4636.
Solving this linear equation, we conclude that the exact solution is given by

Therefore, y(0.1) = 1.609 and y(0.2) = 2.505.
15. We know that e, = %(]ﬁ”(fn)h? where t,, < t, < t,,;. Here

Therefore,



Therefore,
eni1 = (20(t,) — 1)h2.

Therefore,
lenst] < 20 + 1]12

where M = maxg<;<1 |0(t)].

The exact solution of this linear equation is y(t) = 1/2 + 1/2¢*. Then, using the fact
that the local truncation error is given by e,i1 = 36(t,)h? and ¢(t) = 1/2 + 1/2¢*, we can
conclude that .

ni1 = €2 Rh2.

Therefore, |e;| < €%2(0.1)? &~ 0.012. Similarly, |es| < €%%(0.1)% &~ 0.022.
16. We know that e,41 = 3¢"(£,)h? where t,, <, < t,11. Here

St =Lt 20(0).

2
Therefore,
1
P"(t)=—-1+24'(t) =—1+2 (5 —t+ 2¢(t)) = =2t +4¢(t).
Therefore,
ni1 = (—tn + 20(%,))R%
Therefore,

lensal < [2M + 1|12

where M = maxg<;<1 |0(t)].
1

The exact solution of this linear equation is y(t) = 5t + e?®. Then, using the fact that the

local truncation error is given by e,11 = 3¢(f,)h? and @(t) = 1t + €*, we can conclude that
Entl = 2e2in 2.

Therefore, |e;| < 2e°2(0.1)? & 0.024. Similarly, |es| < 2€%8(0.1)? & 0.045.
17. We know that e, = %¢”(Zn)h2 where t,, < t,, < t,41. Here

¢ (t) =1+ (6(1))".

Therefore,
8'() = 2t + 26(0) (1) = 2 + 26°6(t) + 2(6 (1))’
Therefore,
ent1 = (tn +¥i¢(¥n) +(8(Fa))°) %,
Therefore,

lens1] < |t + oy Mogr + M3 4|12

where M, 11 = maxy, <i<t,, [9(2)].
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18. We know that e,y = 56" (f,)h* where t, <, < t,41. Here

¢ (t) = 5t — 3/ 0(t).

Therefore,
10 =5 S(ot0) o) =5 - ;D
Therefore,
_ 1 3 (5, — 3v/0(tn))
R (5 IR > g

= 1 (19 — 15L_> h2.
4 o(tn)

19. We know that e, = %qﬁ”(fn)hz where t,, < t, < t,41. Here

§(t) = Vit o).

Therefore,
1 '(t 1 1
) = 20 + o
2/t +o(t)  2\/t+o(t) 2
Therefore,
en+1:1 1"’% h.
4 ty + ¢(tn)

20. We know that e, = 2¢”(¢,)h* where t,, < t, < t,41. Here
¢ (t) = 2t + e 100,
Therefore,
O (t) =24 (—p(t) — td' (t))e W = 2 4 (—(t) — t(2t + e 1?1))e~ D),
Therefore,

1 _ P o
Ent1 = 5 [2 + (=p(F,) — 282 — Lo 0o =tndlEn) | 2

21.

(a) The solution is given by ¢(t) = == sin(5xt) + 1.
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(¢) Approximate values at ¢t = 0.2,0.4,0.6 are given by 1.1, 1.0, 1.1, respectively.
(d) Since ¢"(t) = —bmsin(bnt), the local truncation error for the Euler method is given by

5mh? -
ent1 = — 7; sin(5nt,,).

In order to guarantee that |e,.1| < 0.05, we need

5mh?

< 0.05.
2

Solving this inequality, we conclude that we would need h < 1/+/507approx0.08.

22.

1. The Euler formula is y,.1 = y, + h(1 — ¢, + 4y,,). The approximate values for the
solution at ¢t = 0.1,0.2,0.3,0.4 are given by

1.55, 2.34, 3.46, 5.07.
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2. The Euler formula is y,+1 = yn + h(3 + t, — yn). The approximate values for the
solution at ¢t = 0.1,0.2,0.3,0.4 are given by

1.20, 1.39, 1.57, 1.74.

3. The Euler formula is y,,+1 = yn + h(2y, — 3t,). The approximate values for the solution
at t = 0.1,0.2,0.3,0.4 are given by

1.20, 1.42, 1.65, 1.90.

23.
()
1000 - ‘28 61%‘ = 1000 - 0 = 0.
(b)
1000 - ‘ggé égog‘ = 1000(0.06) = 60.
(c)
1000 - ‘ggég égogé‘ = 1000(—0.09216) = —92.16.

24. Rounding to three digits, a(b—c) &~ 0.224. Similarly, rounding to three digits, ab ~ 0.702
and ac = 0.477. Therefore, ab — ac ~ 0.225.

25.
(a) The maximum errors occur at ¢t = 2. For h = 0.001,0.01,0.025,0.05, they are given by

56.0393, 510.8722, 1107.4123, 1794.5339.

(b)

7.5 <o

6.57

5.57

4.5+

T 5 ) 3

93



(c) Yes.

(d) Using a curve-fitting routine, the slope of the least squares line is ~ .909.
Section 2.8

1.

(a) The improved Euler formula is

1 1 h?
Yn+1 = Un + h 3+ §tn + §tn+1 —Yn | — E(3+tn - yn)-

Since t,, = tqg + nh and tg = 0, this formula can be simplified to

h? nh?

with yo = 1. With h = 0.05, the approximate values of the solution at ¢ = 0.1,0.2,0.3,0.4
are
1.19512, 1.38120, 1.55909, 1.72956

(b) Using h = 0.025, the approximate values of the solution at t = 0.1,0.2,0.3,0.4 are
1.19515, 1.38125, 1.55916, 1.72965.

(c) Using h = 0.0125, the approximate values of the solution at t = 0.1,0.2,0.3,0.4 are
1.19516, 1.38126, 1.55918, 1.72967.

(d) Using the Runge-Kutta method with h = 0.1, the approximate values of the solution at
t=0.1,0.2,0.3,0.4 are

1.19516, 1.38127, 1.55918, 1.72968

(e) Using the Runge-Kutta method with A = 0.05, the approximate values of the solution
at t =0.1,0.2,0.3,0.4 are

1.19516, 1.38127, 1.55918, 1.72968

(a) The improved Euler formula is

h h
Yn+1 = Yn + 5 (5tn - 3\/y_n)) + 5(5tn+1 -3 V Kn)

where K,, = y, + h(5t,, — 3\/y,). Since t,, = to + nh and ¢, = 0, this formula can be
simplified to

h h
Yot = o+ 5(5nh = 3y/5) + 5 [5(71 +1)h— 3\/Kn}

with yg = 2. With h = 0.05, the approximate values of the solution at £ = 0.1,0.2,0.3,0.4
are
1.62283, 1.33460, 1.12820, 0.995445
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Using h = 0.025, the approximate values of the solution at t = 0.1,0.2,0.3,0.4 are

1.62243, 1.33386, 1.12718, 0.994215

Using h = 0.0125, the approximate values of the solution at ¢t = 0.1,0.2,0.3,0.4 are

1.62234, 1.33368, 1.12693, 0.993921

Using the Runge-Kutta method with A = 0.1, the approximate values of the solution at
t=20.1,0.2,0.3,0.4 are

1.62231, 1.33362, 1.12686, 0.993839

Using the Runge-Kutta method with h = 0.05, the approximate values of the solution
at t =0.1,0.2,0.3,0.4 are

1.62230, 1.33362, 1.12685, 0.993826

The improved Euler formula is

h
Yn+1 = Yn + 5 (4yn - 3tn - 3tn+1) + h2(2yn - Btn)

Since t, = tg + nh and ty = 0, this formula can be simplified to

h2
Yn+1 = Yn + thn + 7(43/” -3 - 6n) — 3nh3

with yo = 1. With h = 0.05, the approximate values of the solution at ¢t = 0.1,0.2,0.3,0.4
are
1.20526, 1.42273, 1.65511, 1.90570

Using h = 0.025, the approximate values of the solution at ¢ = 0.1,0.2,0.3,0.4 are

1.20533, 1.42290, 1.65542, 1.90621

Using h = 0.0125, the approximate values of the solution at ¢ = 0.1,0.2,0.3,0.4 are

1.20534, 1.42294, 1.65550, 1.90634

Using the Runge-Kutta method with A = 0.1, the approximate values of the solution at
t=0.1,0.2,0.3,0.4 are

1.20535, 1.42295, 1.65553, 1.90638
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(e)

5.
()

Using the Runge-Kutta method with h = 0.05, the approximate values of the solution
at t =0.1,0.2,0.3,0.4 are

1.20535, 1.42296, 1.65553, 1.90638

The improved Euler formula is

h
Yn+1 = Yn + 5 (Qtn +e Tt 4 2(t, + h) + e*(tn+h)Kn)

where K, = y, + h(2t, + e '¥). Since ¢, = to + nh and t, = 0, this formula can be
simplified to

h
Ynt+1 = Yn + 5 (2nh + e "hyn 4 2h(n +1) + efh(nJrl)Kn)

with yo = 1. With h = 0.05, the approximate values of the solution at ¢t = 0.1,0.2,0.3,0.4
are
1.10483, 1.21882, 1.34146, 1.47263

Using h = 0.025, the approximate values of the solution at t = 0.1,0.2,0.3,0.4 are

1.10484, 1.21884, 1.34147, 1.47262

Using h = 0.0125, the approximate values of the solution at ¢t = 0.1,0.2,0.3,0.4 are

1.10484, 1.21884, 1.34147, 1.47262

Using the Runge-Kutta method with A = 0.1, the approximate values of the solution at
t=20.1,0.2,0.3,0.4 are

1.10484, 1.21884, 1.34147, 1.47262

Using the Runge-Kutta method with h = 0.05, the approximate values of the solution
at t =0.1,0.2,0.3,0.4 are

1.10484, 1.21884, 1.34147, 1.47262

The improved Euler formula is

. h (Y2 + 2ty h (K2 +2t,1 K,
Ynt1 = Yn 3+ 2 2 3+,

2
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where K, = y, + h(y2 +2t,y,) /(3 +12). Since t,, = to+ nh and t, = 0, this formula can
be simplified to

h (42 + 2nhy, K2+ 2(n+1)hK,
n = Yn - | Z—— h2 -
Yt =4 +2<3+n2h2 )+fmc ( 34 (n+1)2h2

with yo = 0.5. With h = 0.05, the approximate values of the solution at t = 0.1,0.2,0.3,0.4
are
0.510164, 0.524126, 0.542083, 0.564251

(b) Using h = 0.025, the approximate values of the solution at ¢ = 0.1,0.2,0.3,0.4 are

0.510168, 0.524135, 0.542100, 0.564277

(c¢) Using h = 0.0125, the approximate values of the solution at ¢ = 0.1,0.2,0.3,0.4 are

0.510169, 0.524137, 0.542104, 0.564284

(d) Using the Runge-Kutta method with h = 0.1, the approximate values of the solution at
t=20.1,0.2,0.3,0.4 are

0.510170, 0.524138, 0.542105, 0.564286

(e) Using the Runge-Kutta method with A = 0.05, the approximate values of the solution
at t =0.1,0.2,0.3,0.4 are

0.520169, 0.524138, 0.542105, 0.564286

(a) The improved Euler formula is

h
(ti — yfl) siny,, + —(tiH — KZ) sin K,

h
yn-i-l:yn_"_ 9

2

where K,, = y,, + h(t2 — y?)siny,. Since t,, = to + nh and t, = 0, this formula can be
simplified to

h h
Ynt1 = Yn + §(n2h2 —y2)siny, + 3 [(n+1)*h* — K] sin K,

with yo = —1. With h = 0.05, the approximate values of the solution at ¢t = 0.1,0.2,0.3,0.4
are
—0.924650, —0.864338, —0.816642, —0.780008

(b) Using h = 0.025, the approximate values of the solution at ¢ = 0.1,0.2,0.3,0.4 are

—0.924550, —0.864177, —0.816442, —0.779781
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(c) Using h = 0.0125, the approximate values of the solution at t = 0.1,0.2,0.3,0.4 are

—0.924525, —0.864138, —0.816393, —0.779725

(d) Using the Runge-Kutta method with h = 0.1, the approximate values of the solution at
t=20.1,0.2,0.3,0.4 are

—0.924517, —0.864125, —0.816377, —0.779706

(e) Using the Runge-Kutta method with A = 0.05, the approximate values of the solution
at t =0.1,0.2,0.3,0.4 are

—0.924517, —0.864125, —0.816377, —0.779706

7.

(a) The improved Euler formula is

h h
YUn+1 = Un + 5(05 - tn + Qyn) + 5(05 - tn+1 + z(yn + h(05 - tn + 2yn>)>

Since t,, = tg + nh and tg = 0, this formula can be simplified to
Ynt1 = Yn + h(2yn + 0.5) + h*(2y,, — n) — nh?

with yo = 1. With A = 0.025, the approximate values of the solution at ¢t = 0.5,1.0,1.5,2.0
are
2.96719, 7.88313, 20.8114, 55.5106

(b) Using h = 0.0125, the approximate values of the solution at ¢ = 0.5,1.0,1.5,2.0 are

2.96800, 7.88755, 20.8294, 55.5758

(c¢) Using the Runge-Kutta method with h = 0.1, the approximate values of the solution at
t=10.5,1.0,1.5,2.0 are

296825, 7.88889, 20.8349, 55.5957

(d) Using the Runge-Kutta method with A = 0.05, the approximate values of the solution
at t =0.5,1.0,1.5,2.0 are

2.96828, 7.88904, 20.8355, 55.5980
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(a)

(b)

The improved Euler formula is

h h
Y1 = Y+ 5 (5t = 3V/yn) + 5 (5tns1 — 3V Kn)

where K, = y, + h(5t, — 3\/yn). Since t, = to + nh and t, = 0, this formula can be
simplified to

h

Ynt+1 = Yn + g(5nh —3VYn) + 3 [5(n+ 1)h—3 /Kni|

with yo = 2. With A = 0.025, the approximate values of the solution at ¢t = 0.5,1.0,1.5,2.0
are
0.926139, 1.28558, 2.40898, 4.10386

Using h = 0.0125, the approximate values of the solution at ¢ = 0.5,1.0,1.5,2.0 are

0.925815, 1.28525, 2.40869, 4.10359

Using the Runge-Kutta method with A = 0.1, the approximate values of the solution at
t =0.5,1.0,1.5,2.0 are

0.925725, 1.28516, 2.40860, 4.10350

Using the Runge-Kutta method with h = 0.05, the approximate values of the solution
at t = 0.5,1.0,1.5,2.0 are

0.925711, 1.28515, 2.40860, 4.10350

The improved Euler formula is

h h
yn—l—l:yn+§th+yn+§\/tn+1+Kn

where K,, =y, +h+/t, + y,. Since t,, = to+nh and tg = 0, this formula can be simplified
to

h h

with yo = 3. With h = 0.025, the approximate values of the solution at t = 0.5,1.0,1.5,2.0
are
3.96217, 5.10887, 6.43134, 7.92332

Using h = 0.0125, the approximate values of the solution at ¢t = 0.5,1.0,1.5,2.0 are

3.96218, 5.10889, 6.43138, 7.92337
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(c)

10.

11.
(a)

Using the Runge-Kutta method with A = 0.1, the approximate values of the solution at
t=10.5,1.0,1.5,2.0 are

3.96219, 5.10890, 6.43139, 7.92338

Using the Runge-Kutta method with A = 0.05, the approximate values of the solution
at ¢ =0.5,1.0,1.5,2.0 are

3.96219, 5.10890, 6.43139, 7.92338

The improved Euler formula is

h
Yl = Yo+ 5 (2t + €9 + 2(t,, + h) 4 e~ EnTWER)

where K, = y, + h(2t, + e '¥). Since ¢, = to + nh and to = 0, this formula can be
simplified to

h
Ynt1 = Yn + 5 (2nh + e " L 2h(n + 1) + e—h(n—i—l)Kn)

with yo = 1. With A = 0.025, the approximate values of the solution at ¢t = 0.5,1.0,1.5,2.0
are
1.61263, 2.48097, 3.74556, 5.49595

Using h = 0.0125, the approximate values of the solution at ¢ = 0.5,1.0,1.5,2.0 are

1.61263, 2.48092, 3.74550, 5.49589

Using the Runge-Kutta method with A = 0.1, the approximate values of the solution at
t=10.5,1.0,1.5,2.0 are

1.61262, 2.48091, 3.74548, 5.49587

Using the Runge-Kutta method with A = 0.05, the approximate values of the solution
at t =0.5,1.0,1.5,2.0 are

1.61262, 2.48091, 3.74548, 5.49587

The improved Euler formula is

(At (A=t K,
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12.

(b)

where K, = 9, + h(4 — t,y,)/(1 + y2). Since t,, = ty + nh and t, = 0, this formula can

be simplified to
B +h 4 — nhy, +h 4—h(n+1)K,
Ynet =Un T\ T2 2 1+ K2

with yo = —2. With h = 0.025, the approximate values of the solution at ¢t =
0.5,1.0,1.5,2.0 are

—1.44768, —0.144478, 1.06004, 1.40960

Using h = 0.0125, the approximate values of the solution at ¢ = 0.5,1.0,1.5,2.0 are

—1.44765, —0.143690, 1.06072, 1.40999

Using the Runge-Kutta method with A = 0.1, the approximate values of the solution at
t=0.5,1.0,1.5,2.0 are

—1.44764, —0.143543, 1.06089, 1.41008

Using the Runge-Kutta method with A = 0.05, the approximate values of the solution
at t =0.5,1.0,1.5,2.0 are

—1.44764, —0.143427, 1.06095, 1.41011

The improved Euler formula is

. h (y2+ 2ty h (K?+2t,,K,
Yn+1 = Yn 3112 5+,

2

2

where K, = y, + h(y2 + 2t,y,)/(3+t2). Since t, = ty + nh and t, = 0, this formula can
be simplified to

h

yn+1:yn+§<

Y2+ 2nhyn) h (Kg +2(n + 1)hKn)

34 n2h? 2\ 3+ (n+1)2n2

with y9 = 0.5. With h = 0.025, the approximate values of the solution at t =
0.5,1.0,1.5,2.0 are
0.590897, 0.799950, 1.16653, 1.74969

Using h = 0.0125, the approximate values of the solution at ¢ = 0.5,1.0,1.5,2.0 are

0.590906, 0.799988, 1.16663, 1.74992
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(c) Using the Runge-Kutta method with A = 0.1, the approximate values of the solution at
t=10.5,1.0,1.5,2.0 are

0.590909, 0.800000, 1.166667, 1.75000

(d) Using the Runge-Kutta method with A = 0.05, the approximate values of the solution
at t =0.5,1.0,1.5,2.0 are

0.590909, 0.800000, 1.166667, 1.75000

13. The improved Euler method is
h h

where K, = y, + h(1 — t,, + 4y,). Since t, = nh + to and ¢, = 0, this equation can be
simplified to
h h
Yn+1 = Yn + 5(1 — nh + 4y,) + 5[1 —h(n+1)+4K,]
with yo = 1.

14. The differential equation is linear. Its exact solution is given by y(t) = i—ge‘“ + 3t — 13—6.
The improved Euler method is

h h
Yn+1l = Yn + _<1 —tn +4yn) + 5[1 - (tn + h) + 4Kn]

2
where K,, =y, + h(1 — t,, + 4y,).
15.

(a)

SRS e NN
N RS
R

(b) The following are the approximate values of the solution at ¢t = 0.8,0.9,0.95 using the
Runge-Kutta method with A = 0.01:

5.848616, 14.304785, 50.436365.
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16.

(b)

()

17.

(b)

For the integral curve staring at (0,0), the slope becomes infinite near ¢, ~ 1.5. We
note that the exact solution is given implicitly as v — 4y = ¢3.

Based on the direction field, the solution of the initial value problem with initial condi-
tion y(0) = 0 should decrease monotonically to the limiting value y = —2/+/3. Using
the Runge-Kutta method, we calculate the approximate value of t); by looking at the
approximate time in the iteration process that the calculated values begin to increase.
For h = 0.1, 0.05,0.025, 0.01, the respective times are given by t); ~ 1.9,1.65, 1.55, 1.455.

These values are not associated with the integral curve starting at (0,0). These values
are approximations to nearby integral curves.

Suppose now that y(0) = 1. The exact solution is given by y> — 4y = t3 — 3. For
the integral curve starting at (0,1), the slope becomes infinite near t); ~ 2.0. Using
the Runge-Kutta method, we calculate the following approximate values for t;;. For
h =0.1,0.05,0.025,0.01, the respective times are given by t,; ~ 1.85,1.85,1.86, 1.835.

First we notice that

St — oIl gy, Vel
oy b _ b
- Qb (tn>h - 2 - 2 :

Using this fact, it follows that ¢(,41) — yn41 satisfies the given equation.
First, using the Taylor approximation, we see that
f[tn +h,yn + hf<tn7 yn)] - f(tna yn) = ft<tna yn)h + fy(tna yn>hf(tn7 yn)

1
+ 5(h2 fie + 2Rk fr, + K f,)

z=£,y=n

103



Next, we see that

¢H(tn)h = ft<tna Qb(tn))h + fy(tm ¢(tn))¢/<tn)h
= ft(tna yn)h + fy(tna yn)hf(tm yn)'

Therefore, we conclude that

S0 00D~ (Tt + D+ ()] — Tt )}

z=£ ,y=n>

(c) If f is linear in ¢ and y, then f,; = fi, = f,, = 0. Therefore, the terms from part (b)
above are all zero.

1
—h <§(h2fﬁ + 2hk fry + K% fyy)

is proportional to k3.

18. The exact solution is given by ¢(t) = —3/16 +t/4 + (19/16)e*. Then, by the results of
Problem 17(c), the error will be given by

B ¢///(¥n)h3
€nt+1 = T

Here ¢/ = 1/4 + (19/4)e™, ¢" = 19¢%t, ¢ = 76e*. Therefore,

38¢ttn 3
enil = .
+1 3

Therefore, on the interval 0 <t < 2, we conclude that

38¢8h3
N 37,758.8K°.

|en+1| S
Then for h = 0.05, we conclude that

38¢4(%:99)(0.05)3
3

= 0.00193389.

leq| <

19. The exact solution of the initial value problem is ¢(t) = 3 + 3¢*. Based on the result
from problem 17(c), the local truncation error for a linear differential equation is

1 _
Cnp1 = 6¢"’(tn)h3.
Here ¢/ = €2, ¢" = 2e?, ¢ = 4e*. Therefore,

2 -
2tn 1,3
Cnt+1 = g@ h°.
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Further, on the interval 0 <t <1,
2
lens1| < §e2h3 = 4.92604h°.
Letting h = 0.1,
2 ,
leq| < ge?<0~1>(0.1)5 = 0.000814269.

Using the improved Euler method, with A = 0.1, we have y; = 1.11000. The exact value of
the solution is ¢(0.1) = 1.1107014.
1

20. The exact solution of the initial value problem is ¢(t) = 5t + e?. Based on the result

from problem 17(c), the local truncation error for a linear differential equation is

1 -
€n+1 = éd),”(tn)hg‘

Here ¢/ = 1 + 2% ¢" = 4e*, ¢ = 8e?'. Therefore,
2
4

ni1 = §62tn h3.

Further, on the interval 0 <t <1,
4 9.3 3
lent1] < 3¢ h? = 9.85207h°.

Letting h = 0.1,
4
leg] < 5eQ<O-1>(0.1)3 = 0.00162854.

21. The Euler formula is
Ynt1 = Yn + (0.5 — t, + 2y,).

Since tg = 0, yo = 1 and A = 0.1, we have
y1=1+0.1(0.5 -0+ 2) = 1.25.
For ty = 0, the improved Euler formula is
Ynt1 = Un + h(2yn + 0.5) + h*(2y,, — n) — nh?.
Therefore, for yo =1 and h = 0.1,
y1 =1+0.1(2+0.5) + (0.1)*(2 = 0) — 0(0.1)® = 1.27.

Therefore, the estimated error of the Euler method is e, = 1.27 — 1.25 = .02. If we want

the error of the Euler method to be less than 0.0025, we need to multiply the original step
size of 0.1 by the factor 1/0.0025/0.02 ~ 0.35. Therefore, the required step size is estimated
to be h = (0.1)(0.35) = 0.035.
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22. For tqg = 0, the Euler formula is

Yn+1 = Y + h(5nh — 3/yn).

Therefore, for yo = 2 and h = 0.1, we have
y1 =2+ 0.1(0 — 3v/2) = 1.575736.

For ty = 0, the improved Euler formula is

h

Yn+1 = Yn + g(5nh —3y/Yn) + 5 [5(n + 1)h — 3\/Kn]

where K,, =y, + h(5t, — 3,/yn). Therefore, for yo =2 and h = 0.1,

y1 =2+ 0.05(0 — 3v/2) 4 0.05[5(0.1) — 3\/2 +0.1(0 — 3v2)] = 1.624575.

Therefore, the estimated error of the Euler method is e, = 1.624575—1.575736 = 0.048839.
If we want the error of the Euler method to be less than 0.0025, we need to multiply the
original step size of 0.1 by the factor \/0.0025/0.048839 ~ 0.226. Therefore, the required
step size is estimated to be h ~ (0.1)(0.226) = 0.0226.

23. For ty = 0, the Euler formula is

Yni1 = Yn + h/nh + y,.

Therefore, for yo = 3 and h = 0.1, we have

y1 = 3+ 0.1v0 + 3 = 3.173205.

For ty = 0, the improved Euler formula is

h h
Yni1 = Yo + 5 V1R + Yo + §¢(n+ Dh+ K,

where K,, =y, + h/t, + y,. Therefore, for yo = 3 and h = 0.1,

y1 =3+ 0.05v0 + 3 + 0.05\/().1 + (34 0.1v/0 + 3) = 3.177063.

Therefore, the estimated error of the Euler method is eZXf; = 3.177063—3.173205 = 0.003858.
If we want the error of the Euler method to be less than 0.0025, we need to multiply the
original step size of 0.1 by the factor 1/0.0025/0.003858 ~ 0.805. Therefore, the required
step size is estimated to be h &~ (0.1)(0.226) = 0.0805.

24. For tqg = 0, the Euler formula is

Yni1 = Un + h(y2 + 2nhy,)/ (3 +n?h?).
Therefore, for yo = 0.5 and h = 0.1, we have

y1 = 0.5+ 0.1(0.5* +0) /(3 + 0) = 0.508334.
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For ty = 0, the improved Euler formula is

h (yi + 2nhyn) h (Kg +2(n + 1)hKn>

it =W 5 T3 a2 3+ (n+1)2h?

2
where K,, =y, + h(y> + 2t,y,)/(3 + t2). Therefore, for yo = 0.5 and h = 0.1,

0.52 + 0 (0.5 4 0.1(0.52/3))2 + 2(0.1)(0.5 + 0.1(0.5%/3))
+0.05
340 3+0.12

y1 = 0.5+0.05 = (0.510148.

Therefore, the estimated error of the Euler method is e, = 0.510148 — 0.598334 = 0.0018.
The local truncation error is less than the given tolerance. Therefore, if we allow an error tol-
erance of 0.0025, we can multiply the original step size of 0.1 by the factor 1/0.0025/0.0018 =~
1.1785. Therefore, the required step size is estimated to be h ~ (0.1)(1.1785) = 0.11785.
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