


Chapter 2

Section 2.1
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(b) All solutions seem to converge to an increasing function as t →∞.

(c) The integrating factor is µ(t) = e3t. Then

e3ty′ + 3e3ty = e3t(t + e−2t) =⇒ (e3ty)′ = te3t + et

=⇒ e3ty =

∫
(te3t + et) dt =

1

3
te3t − 1

9
e3t + et + c

=⇒ y =
t

3
− 1

9
+ e−2t + ce−3t.

We conclude that y is asymptotic to t/3− 1/9 as t →∞.
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(b) All slopes eventually become positive, so all solutions will eventually increase without
bound.

(c) The integrating factor is µ(t) = e−2t. Then

e−2ty′ − 2e−2ty = e−2t(t2e2t) =⇒ (e−2ty)′ = t2

=⇒ e−2ty =

∫
t2 dt =

t3

3
+ c

=⇒ y =
t3

3
e2t + ce2t.

We conclude that y increases exponentially as t →∞.
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(b) All solutions appear to converge to the function y(t) = 1.

(c) The integrating factor is µ(t) = et. Therefore,

ety′ + ety = t + et =⇒ (ety)′ = t + et

=⇒ ety =

∫
(t + et) dt =

t2

2
+ et + c

=⇒ y =
t2

2
e−t + 1 + ce−t.

Therefore, we conclude that y → 1 as t →∞.
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(b) The solutions eventually become oscillatory.

(c) The integrating factor is µ(t) = t. Therefore,

ty′ + y = 3t cos(2t) =⇒ (ty)′ = 3t cos(2t)

=⇒ ty =

∫
3t cos(2t) dt =

3

4
cos(2t) +

3

2
t sin(2t) + c

=⇒ y = +
3 cos 2t

4t
+

3 sin 2t

2
+

c

t
.

We conclude that y is asymptotic to (3 sin 2t)/2 as t →∞.
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(b) All slopes eventually become positive so all solutions eventually increase without bound.

(c) The integrating factor is µ(t) = e−2t. Therefore,

e−2ty′ − 2e−2ty = 3e−t =⇒ (e−2ty)′ = 3e−t

=⇒ e−2ty =

∫
3e−t dt = −3e−t + c

=⇒ y = −3et + ce2t.

We conclude that y increases exponentially as t →∞.
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(b) For t > 0, all solutions seem to eventually converge to the function y = 0.

(c) The integrating factor is µ(t) = t2. Therefore,

t2y′ + 2ty = t sin(t) =⇒ (t2y)′ = t sin(t)

=⇒ t2y =

∫
t sin(t) dt = sin(t)− t cos(t) + c

=⇒ y =
sin t− t cos t + c

t2
.

We conclude that y → 0 as t →∞.
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(b) For t > 0, all solutions seem to eventually converge to the function y = 0.
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(c) The integrating factor is µ(t) = et2 . Therefore, using the techniques shown above, we
see that y(t) = t2e−t2 + ce−t2 . We conclude that y → 0 as t →∞.
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(b) For t > 0, all solutions seem to eventually converge to the function y = 0.

(c) The integrating factor is µ(t) = (1 + t2)2. Then

(1 + t2)2y′ + 4t(1 + t2)y =
1

1 + t2

=⇒ ((1 + t2)2y) =

∫
1

1 + t2
dt

=⇒ y = (tan−1(t) + c)/(1 + t2)2.

We conclude that y → 0 as t →∞.
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(b) All slopes eventually become positive. Therefore, all solutions will increase without
bound.

(c) The integrating factor is µ(t) = et/2. Therefore,

2et/2y′ + et/2y = 3tet/2 =⇒ 2et/2y =

∫
3tet/2 dt = 6tet/2 − 12et/2 + c

=⇒ y = 3t− 6 + ce−t/2.

We conclude that y → 3t− 6 as t →∞.

10.

(a)

–4

–2

0

2

4

y(t)

–1 1 2 3 4 5
t

(b) For y > 0, the slopes are all positive, and, therefore, the corresponding solutions increase
without bound. For y < 0 almost all solutions have negative slope and therefore decrease
without bound.

(c) By dividing the equation by t, we see that the integrating factor is µ(t) = 1/t. Therefore,

y′/t− y/t2 = te−t =⇒ (y/t)′ = te−t

=⇒ y

t
=

∫
te−t dt = −te−t − e−t + c

=⇒ y = −t2e−t − te−t + ct.

We conclude that y →∞ if c > 0, y → −∞ if c < 0 and y → 0 if c = 0.

11.
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(b) The solution appears to be oscillatory.

(c) The integrating factor is µ(t) = et. Therefore,

ety′ + ety = 5et sin(2t) =⇒ (ety)′ = 5et sin(2t)

=⇒ ety =

∫
5et sin(2t) dt = −2et cos(2t) + et sin(2t) + c =⇒ y = −2 cos(2t) + sin(2t) + ce−t.

We conclude that y → sin(2t)− 2 cos(2t) as t →∞.
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(b) All slopes are eventually positive. Therefore, all solutions increase without bound.

(c) The integrating factor is µ(t) = et/. Therefore,

2et/2y′ + et/2y = 3t2et/2 =⇒ (2et/2y)′ = 3t2et/2

=⇒ 2et/2y =

∫
3t2et/2 dt = 6t2et/2 − 24tet/2 + 48et/2 + c

=⇒ y = 3t2 − 12t + 24 + ce−t/2.

We conclude that y is asymptotic to 3t2 − 12t + 24 as t →∞.
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13. The integrating factor is µ(t) = e−t. Therefore,

(e−ty)′ = 2tet =⇒ y = et

∫
2tet dt = 2te2t − 2e2t + cet.

The initial condition y(0) = 1 implies −2 + c = 1. Therefore, c = 3 and y = 3et + 2(t− 1)e2t

14. The integrating factor is µ(t) = e2t. Therefore,

(e2ty)′ = t =⇒ y = e−2t

∫
t dt =

t2

2
e−2t + ce−2t.

The initial condition y(1) = 0 implies e−2t/2 + ce−2t = 0. Therefore, c = −1/2, and
y = (t2 − 1)e−2t/2

15. Dividing the equation by t, we see that the integrating factor is µ(t) = t2. Therefore,

(t2y)′ = t3 − t2 + t =⇒ y = t−2

∫
(t3 − t2 + t) dt =

(
t2

4
− t

3
+

1

2
+

c

t2

)
.

The initial condition y(1) = 1/2 implies c = 1/12, and y = (3t4 − 4t3 + 6t2 + 1)/12t2.

16. The integrating factor is µ(t) = t2. Therefore,

(t2y)′ = cos(t) =⇒ y = t−2

∫
cos(t) dt = t−2(sin(t) + c).

The initial condition y(π) = 0 implies c = 0 and y = (sin t)/t2

17. The integrating factor is µ(t) = e−2t. Therefore,

(e−2ty)′ = 1 =⇒ y = e2t

∫
1 dt = e2t(t + c).

The initial condition y(0) = 2 implies c = 2 and y = (t + 2)e2t.

18. After dividing by t, we see that the integrating factor is µ(t) = t2. Therefore,

(t2y)′ = 1 =⇒ y = t−2

∫
t sin(t) dt = t−2(sin(t)− t cos(t) + c).

The initial condition y(π/2) = 1 implies c = (π2/4)−1 and y = t−2[(π2/4)−1−t cos t+sin t].

19. After dividing by t3, we see that the integrating factor is µ(t) = t4. Therefore,

(t4y)′ = te−t =⇒ y = t−4

∫
te−t dt = t−4(−te−t − e−t + c).

The initial condition y(−1) = 0 implies c = 0 and y = −(1 + t)e−t/t4, t 6= 0

20. After dividing by t, we see that the integrating factor is µ(t) = tet. Therefore,

(tety)′ = tet =⇒ y = t−1e−t

∫
tet dt = t−1e−t(tet − et + c) = t−1(t− 1 + ce−t).

The initial condition y(ln 2) = 1 implies c = 2 and y = (t− 1 + 2e−t)/t, t 6= 0

21.
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The solutions appear to diverge from an oscillatory solution. It appears that a0 ≈ −1.
For a > −1, the solutions increase without bound. For a < −1, the solutions decrease
without bound.

(b) The integrating factor is µ(t) = e−t/2. From this, we conclude that the general solution
is y(t) = (8 sin(t)− 4 cos(t))/5 + cet/2. The solution will be sinusoidal as long as c = 0.
The initial condition for the sinusoidal behavior is y(0) = (8 sin(0)−4 cos(0))/5 = −4/5.
Therefore, a0 = −4/5.

(c) y oscillates for a = a0

22.
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All solutions eventually increase or decrease without bound. The value a0 appears to be
approximately a0 = −3.

(b) The integrating factor is µ(t) = e−t/2, and the general solution is y(t) = −3et/3 + cet/2.
The initial condition y(0) = a implies y = −3et/3 + (a + 3)et/2. The solution will behave
like (a + 3)et/2. Therefore, a0 = −3.
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(c) y → −∞ for a = a0

23.
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Solutions eventually increase or decrease without bound, depending on the initial value
a0. It appears that a0 ≈ −1/8.

(b) Dividing the equation by 3, we see that the integrating factor is µ(t) = e−2t/3. Therefore,
the solution is y = [(2 + a(3π + 4))e2t/3− 2e−πt/2]/(3π + 4). The solution will eventually
behave like (2 + a(3π + 4))e2t/3/(3π + 4). Therefore, a0 = −2/(3π + 4).

(c) y → 0 for a = a0

24.
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It appears that a0 ≈ .4. As t → 0, solutions increase without bound if y > a0 and
decrease without bound if y < a0.
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(b) The integrating factor is µ(t) = tet. The general solution is y = te−t +ce−t/t. The initial
condition y(1) = a implies y = te−t + (ea− 1)e−t/t. As t → 0, the solution will behave
like (ea− 1)e−t/t. From this, we see that a0 = 1/e.

(c) y → 0 as t → 0 for a = a0

25.

(a)

–4

–2

0

2

4

y(t)

–5 –4 –3 –2 –1
t

It appears that a0 ≈ .4. That is, as t → 0, for y(−π/2) > a0, solutions will increase
without bound, while solutions will decrease without bound for y(−π/2) < a0.

(b) After dividing by t, we see that the integrating factor is t2, and the solution is y =
− cos t/t2 + π2a/4t2. Since limt→0 cos(t) = 1, solutions will increase without bound if
a > 4/π2 and decrease without bound if a < 4/π2. Therefore, a0 = 4/π2.

(c) For a0 = 4/π2, y = (1− cos(t))/t2 → 1/2 as t → 0.

26.
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It appears that a0 ≈ 2. For y(1) > a0, the solution will increase without bound as t → 0,
while the solution will decrease without bound if y(t) < a0.

(b) After dividing by sin(t), we see that the integrating factor is µ(t) = sin(t). As a result,
we see that the solution is given by y = (et + c) sin(t). Applying our initial condition,
we see that our solution is y = (et − e + a sin 1)/ sin t. The solution will increase if
1 − e + a sin 1 > 0 and decrease if 1 − e + a sin 1 < 0. Therefore, we conclude that
a0 = (e− 1)/ sin 1

(c) If a0 = (e− 1) sin(1), then y = (et − 1)/ sin(t). As t → 0, y → 1.

27. The integrating factor is µ(t) = et/2. Therefore, the general solution is y(t) = [4 cos(t) +
8 sin(t)]/5 + ce−t/2. Using our initial condition, we have y(t) = [4 cos(t) + 8 sin(t)− 9et/2]/5.
Differentiating, we have

y′ = [−4 sin(t) + 8 cos(t) + 4.5e−t/2]/5

y′′ = [−4 cos(t)− 8 sin(t)− 2.25et/2]/5.

Setting y′ = 0, the first solution is t1 = 1.3643, which gives the location of the first stationary
point. Since y′′(t1) < 0, the first stationary point is a local maximum. The coordinates of
the point are (1.3643, .82008).

28. The integrating factor is µ(t) = e2t/3. The general solution of the differential equation is
y(t) = (21− 6t)/8 + ce−2t/3. Using the initial condition, we have y(t) = (21− 6t)/8 + (y0 −
21/8)e−2t/3. Therefore, y′(t) = −3/4− (2y0−21/4)e−2t/3/3. Setting y′(t) = 0, the solution is
t1 = 3

2
ln[(21− 8y0)/9]. Substituting into the solution, the respective value at the stationary

point is y(t1) = 3
2

+ 9
4
ln 3 − 9

8
ln(21 − 8y0). Setting this result equal to zero, we obtain the

required initial value y0 = (21− 9e4/3)/8 = −1.643.

29.

(a) The integrating factor is µ(t) = et/4. The general solution is

y(t) = 12 + [8 cos(2t) + 64 sin(2t)]/65 + ce−t/4.

Applying the initial condition y(0) = 0, we arrive at the specific solution

y(t) = 12 + [8 cos(2t) + 64 sin(2t)− 788e−t/4]/65.

For large values of t, the solution oscillates about the line y = 12.

(b) To find the value of t for which the solution first intersects the line y = 12, we need
to solve the equation 8 cos(2t) + 64 sin(2t)− 788e−t/4 = 0. The time t is approximately
10.519.

30. The integrating factor is µ(t) = e−t. The general solution is y(t) = −1 − 3
2
cos(t) −

3
2
sin(t) + cet. In order for the solution to remain finite as t →∞, we need c = 0. Therefore,

y0 must satisfy y0 = −1− 3/2 = −5/2.
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31. The integrating factor is µ(t) = e−3t/2 and the general solution of the equation is y(t) =
−2t−4/3−4et+ce3t/2. The initial condition implies y(t) = −2t−4/3−4et+(y0+16/3)e3t/2.
The solution will behave like (y0+16/3)e3t/2 (for y0 6= −16/3). For y0 > −16/3, the solutions
will increase without bound, while for y0 < −16/3, the solutions will decrease without bound.
If y0 = −16/3, the solution will decrease without bound as the solution will be −2t−4/3−4et.

32. By equation (41), we see that the general solution is given by

y = e−t2/4

∫ t

0

es2/4 ds + ce−t2/4.

Applying L’Hospital’s rule,

lim
t→∞

∫ t

0
es2/4 ds

et2/4
= lim

t→∞
et2/4

(t/2)et2/4
= 0.

Therefore, y → 0 as t →∞.

33. The integrating factor is µ(t) = eat. First consider the case a 6= λ. Multiplying the
equation by eat, we have

(eaty)′ = be(a−λ)t =⇒ y = e−at

∫
be(a−λ)t = e−at

(
b

a− λ
e(a−λ)t + c

)
=

b

a− λ
e−λt + ce−at.

Since a, λ are assumed to be positive, we see that y → 0 as t → ∞. Now if a = λ above,
then we have

(eaty)′ = b =⇒ y = e−at(bt + c)

and similarly y → 0 as t →∞.

34. We notice that y(t) = ce−t + 3 approaches 3 as t → ∞. We just need to find a first-
order linear differential equation having that solution. We notice that if y(t) = f + g, then
y′ + y = f ′ + f + g′ + g. Here, let f = ce−t and g(t) = 3. Then f ′ + f = 0 and g′ + g = 3.
Therefore, y(t) = ce−t + 3 satisfies the equation y′ + y = 3. That is, the equation y′ + y = 3
has the desired properties.

35. We notice that y(t) = ce−t + 3 − t approaches 3 − t as t → ∞. We just need to find a
first-order linear differential equation having that solution. We notice that if y(t) = f + g,
then y′ + y = f ′ + f + g′ + g. Here, let f = ce−t and g(t) = 3 − t. Then f ′ + f = 0
and g′ + g = −1 + 3 − t = −2 − t. Therefore, y(t) = ce−t + 3 − t satisfies the equation
y′ + y = −2− t. That is, the equation y′ + y = −2− t has the desired properties.

36. We notice that y(t) = ce−t + 2t− 5 approaches 2t− 5 as t →∞. We just need to find a
first-order linear differential equation having that solution. We notice that if y(t) = f + g,
then y′ + y = f ′ + f + g′ + g. Here, let f = ce−t and g(t) = 2t − 5. Then f ′ + f = 0
and g′ + g = 2 + 2t − 5 = 2t − 3. Therefore, y(t) = ce−t + 2t − 5− satisfies the equation
y′ + y = 2t− 3. That is, the equation y′ + y = 2t− 3 has the desired properties.

37. We notice that y(t) = ce−t + 4− t2 approaches 4− t2 as t →∞. We just need to find a
first-order linear differential equation having that solution. We notice that if y(t) = f + g,
then y′ + y = f ′ + f + g′ + g. Here, let f = ce−t and g(t) = 4 − t2. Then f ′ + f = 0 and
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g′ + g = −2t + 4− t2 = 4− 2t− t2. Therefore, y(t) = ce−t + 2t− 5− satisfies the equation
y′ + y = 4− 2t− t2. That is, the equation y′ + y = 4− 2t− t2 has the desired properties.

38. Multiplying the equation by ea(t−t0), we have

ea(t−t0)y′ + aea(t−t0)y = ea(t−t0)g(t)

=⇒ (ea(t−t0)y)′ = ea(t−t0)g(t)

=⇒ y(t) =

∫ t

t0

e−a(t−s)g(s) ds + e−a(t−t0)y0.

Assuming g(t) → g0 as t →∞,
∫ t

t0

e−a(t−s)g(s) ds →
∫ t

t0

e−a(t−s)g0 ds =
g0

a
− e−a(t−t0)

a
g0 → g0

a
as t →∞

For an example, let g(t) = e−t +1. Assume a 6= 1. By undetermined coefficients, we look
for a solution of the form y = ce−at + Ae−t + B. Substituting a function of this form into
the differential equation leads to the equation

[−A + aA]e−t + aB = e−t + 1 =⇒ −A + aA = 1 and aB = 1.

Therefore, A = 1/(a − 1), B = 1/a and y = ce−at + 1
a−1

e−t + 1/a. The initial condition

y(0) = y0 implies y(t) = (y0 − 1
a−1

− 1
a
)e−at + 1

a−1
e−t + 1/a → 1/a as t →∞.

39.

(a) The integrating factor is e
R

p(t) dt. Multiplying by the integrating factor, we have

e
R

p(t) dty′ + e
R

p(t) dtp(t)y = 0.

Therefore, (
e
R

p(t) dty
)′

= 0

which implies
y(t) = Ae−

R
p(t) dt

is the general solution.

(b) Let y = A(t)e−
R

p(t) dt. Then in order for y to satisfy the desired equation, we need

A′(t)e−
R

p(t) dt − A(t)p(t)e−
R

p(t) dt + A(t)p(t)e−
R

p(t) dt = g(t).

That is, we need
A′(t) = g(t)e

R
p(t) dt.

(c) From equation (iv), we see that

A(t) =

∫ t

0

g(τ)e
R

p(τ) dτ dτ + C.

Therefore,

y(t) = e−
R

p(t) dt

(∫ t

0

g(τ)e
R

p(τ) dτ dτ + C

)
.
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40. Here, p(t) = −2 and g(t) = t2e2t. The general solution is given by

y(t) = e−
R

p(t) dt

(∫ t

0

g(τ)e
R

p(τ) dτ dτ + C

)

= e
R

2 dt

(∫ t

0

τ 2e2τe
R −2 dτ dτ + C

)

= e2t

(∫ t

0

τ 2 dτ + C

)

= e2t

(
t3

3
+ c

)
.

41. Here, p(t) = 1/t and g(t) = 3 cos(2t). The general solution is given by

y(t) = e−
R

p(t) dt

(∫ t

0

g(τ)e
R

p(τ) dτ dτ + C

)

= e−
R

1
t

dt

(∫ t

0

3 cos(2τ)e
R

1
τ

dτ dτ + C

)

=
1

t

(∫ t

0

3τ cos(2τ) dτ + C

)

=
1

t

(
3

4
cos(2t) +

3

2
t sin(2t) + C

)
.

42. Here, p(t) = 2/t and g(t) = sin(t)/t. The general solution is given by

y(t) = e−
R

p(t) dt

(∫ t

0

g(τ)e
R

p(τ) dτ dτ + C

)

= e−
R

2
t

dt

(∫ t

0

sin(τ)

τ
e
R

2
τ

dτ dτ + C

)

=
1

t2

(∫ t

0

sin(τ)

τ

2

dτ + C

)

=
1

t2

(∫ t

0

τ sin(τ) dτ + C

)

=
1

t2
(sin(t)− t cos(t) + C) .
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43. Here, p(t) = 1/2 and g(t) = 3t2/2. The general solution is given by

y(t) = e−
R

p(t) dt

(∫ t

0

g(τ)e
R

p(τ) dτ dτ + C

)

= e−
R

1
2

dt

(∫ t

0

3t2

2
e
R

1
2

dτ dτ + C

)

= e−t/2

(∫ t

0

3τ 2

2
eτ/2 dτ + C

)

= e−t/2
(
3t2et/2 − 12tet/2 + 24et/2 + C

)

= et2 − 12t + 24 + ce−t/2.

Section 2.2

1. Rewriting as ydy = x2dx, then integrating both sides, we have y2/2 = x3/3 + C, or
3y2 − 2x3 = c; y 6= 0

2. Rewriting as ydy = [x2/(1 + x3)]dx, then integrating both sides, we have y2/2 = ln |1 +
x3|/3 + C, or 3y2 − 2 ln |1 + x3| = c; x 6= −1, y 6= 0

3. Rewriting as y−2dy = − sin(x)dx, then integrating both sides, we have −y−1 = cos(x)+C,
or y−1 + cos x = c if y 6= 0;. Also, we have y = 0 everywhere

4. Rewriting as (3 + 2y)dy = (3x2 − 1)dx, then integrating both sides, we have 3y + y2 −
x3 + x + C as long as y 6= −3/2.

5. Rewriting as sec2(2y)dy = cos2(x)dx, then integrating both sides, we have tan(2y)/2 =
x/2 + sin(2x)/4 + C, or 2 tan 2y − 2x − sin 2x = C as long as cos 2y 6= 0. Also, if y =
±(2n + 1)π/4 for any integer n, then y′ = 0 = cos(2y)

6. Rewriting as (1 − y2)−1/2dy = dx/x, then integrating both sides, we have sin−1(y) =
ln |x|+ C. Therefore, y = sin[ln |x|+ c] as long as x 6= 0 and |y| < 1;. We also notice that if
y = ±1, then xy′ = 0 = (1− y2)1/2 is a solution.

7. Rewriting as (y + ey)dy = (x− e−x)dx, then integrating both sides, we have y2/2 + ey =
x2/2 + e−x + C, or y2 − x2 + 2(ey − e−x) = C as long as y + ey 6= 0.

8. Rewriting as (1+y2)dy = x2dx, then integrating both sides, we have y+y3/3 = x3/3+C,
or 3y + y3 − x3 = c;.

9.

(a) Rewriting as y−2dy = (1−2x)dx, then integrating both sides, we have −y−1 = x−x2+C.
The initial condition, y(0) = −1/6 implies C = 6. Therefore, y = 1/(x2 − x− 6).

(b)

16



–20

–15

–10

–5

5

y

–2 –1 1 2 3x

(c) −2 < x < 3

10.

(a) Rewriting as ydy = (1− 2x)dx, then integrating both sides, we have y2/2 = x− x2 + C.
Therefore, y = ±√2x− 2x2 + 4. The initial condition, y(1) = −2 implies C = 2 and
y = −√2x− 2x2 + 4.

(b)

–4

–2

0

2

4

y

–2 –1 1 2 3
x

(c) −1 < x < 2

11.

(a) Rewriting as xexdx = −ydy, then integrating both sides, we have xex−ex = −y2/2+C.
The initial condition, y(0) = 1 implies C = −1/2. Therefore, y = [2(1− x)ex − 1]1/2.

(b)
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(c) −1.68 < x < 0.77 approximately

12.

(a) Rewriting as r−2dr = θ−1dθ, then integrating both sides, we have −r−1 = ln θ + C. The
initial condition, r(1) = 2 implies C = −1/2. Therefore, r = 2/(1− 2 ln θ).

(b)

–4

–2

2

4

6

8

10

r

–2 –1 1 2 3
x

(c) 0 < θ <
√

e

13.

(a) Rewriting as ydy = 2x/(1+x2)dx, then integrating both sides, we have y2/2 = ln(1+x2)+
C. The initial condition, y(0) = −2 implies C = 2. Therefore, y = −[2 ln(1+x2)+4]1/2.

(b)
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14.

(a) Rewriting as y−3dy = x(1 + x2)−1/2dx, then integrating both sides, we have −y−2/2 =√
1 + x2 + C. The initial condition, y(0) = 1 implies C = −3/2. Therefore, y =[

3− 2
√

1 + x2
]−1/2

.

(b)
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x

(c) |x| < 1

2

√
5

15.

(a) Rewriting as (1 + 2y)dy = 2xdx, then integrating both sides, we have y + y2 = x2 + C.
The initial condition, y(2) = 0 implies C = −4. Therefore, y2 + y = x2− 4. Completing

the square, we have (y + 1/2)2 = x2 − 15/4, and, therefore, y = −1

2
+

1

2

√
4x2 − 15.

(b)

19



–4

–2

0

2

4

6

8

10

y

2 4 6 8 10
x

(c) x >
1

2
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15

16.

(a) Rewriting as 4y3dy = x(x2+1)dx, then integrating both sides, we have y4 = (x2+1)2/4+
C. The initial condition, y(0) = −1/

√
2 implies C = 0. Therefore, y = −

√
(x2 + 1)/2.

(b)
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x

(c) −∞ < x < ∞

17.

(a) Rewriting as (2y − 5)dy = (3x2 − ex)dx, then integrating both sides, we have y2 − 5y =
x3− ex +C. The initial condition, y(0) = 1 implies C = −3. Completing the square, we
have (y − 5/2)2 = x3 − ex + 13/4. Therefore, y = 5/2−

√
x3 − ex + 13/4.

(b)
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(c) −1.4445 < x < 4.6297 approximately

18.

(a) Rewriting as (3 +4y)dy = (e−x− ex)dx, then integrating both sides, we have 3y +2y2 =
−(ex + e−x) + C. The initial condition, y(0) = 1 implies C = 7. Completing the square,
we have (y + 3/4)2 = −(ex + e−x)/2 + 65/16. Therefore, y = −3

4
+ 1

4

√
65− 8ex − 8e−x.

(b)
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x

(c) |x| < 2.0794 approximately

19.

(a) Rewriting as cos(3y)dy = − sin(2x)dx, then integrating both sides, we have sin(3y)/3 =
cos(2x)/2 + C. The initial condition, y(π/2) = π/3 implies C = 1/2. Therefore, y =
[π − arcsin(3 cos2 x)]/3.

(b)

21



–1

–0.5

0.5

1

1.5

2

y

–2 –1 1 2
x

(c) |x− π/2| < 0.6155 approximately

20.

(a) Rewriting as y2dy = arcsin(x)/
√

1− x2dx, then integrating both sides, we have y3/3 =
(arcsin(x))2/2 + C. The initial condition, y(0) = 1/ implies C = 0. Therefore, y =[

3
2
(arcsin x)2

]1/3
.

(b)

–1

–0.5

0.5

1

1.5

2

y

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1
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(c) −1 < x < 1

21. Rewriting the equation as (3y2 − 6y)dy = (1 + 3x2)dx and integrating both sides, we
have y3 − 3y2 = x + x3 + C. The initial condition, y(0) = 1 implies c = −2. Therefore,
y3−3y2−x−x3 +2 = 0. When 3y2−6y = 0, the integral curve will have a vertical tangent.
In particular, when y = 0, 2. From our solution, we see that y = 0 implies x = 1 and y = 2
implies x = −1. Therefore, the solution is defined for −1 < x < 1.

22. Rewriting the equation as (3y2 − 4)dy = 3x2dx and integrating both sides, we have
y3−4y = x3+C. The initial condition y(1) = 0 implies C = −1. Therefore, y3−4y−x3 = −1.
When 3y2 − 4 = 0, the integral curve will have a vertical tangent. In particular, when
y = ±2/

√
3. At these values for y, we have x = −1.276, 1.598. Therefore, the solution is

defined for −1.276 < x < 1.598
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23. Rewriting the equation as y−2dy = (2 + x)dx and integrating both sides, we have
−y−1 = 2x + x2/2 + C. The initial condition y(0) = 1 implies C = −1. Therefore,
y = −1/(x2/2 + 2x − 1). To find where the function attains it minimum value, we look
where y′ = 0. We see that y′ = 0 implies y = 0 or x = −2. But, as seen by the solution
formula, y is never zero. Further, it can be verified that y′′(−2) > 0, and, therefore, the
function attains a minimum at x = −2.

24. Rewriting the equation as (3 + 2y)dy = (2 − ex)dx and integrating both sides, we have
3y + y2 = 2x − ex + C. By the initial condition y(0) = 0, we have C = 1. Completing the
square, it follows that y = −3/2+

√
2x− ex + 13/4. The solution is defined if 2x−ex+13/4 ≥

0, that is, −1.5 ≤ x ≤ 2 (approximately). In that interval, y = 0 for x = ln 2. It can be
verified that y′′(ln 2) < 0, and, therefore, the function attains its maximum value at x = ln 2.

25. Rewriting the equation as (3 + 2y)dy = 2 cos(2x)dx and integrating both sides, we have
3y +y2 = sin(2x)+C. By the initial condition y(0) = −1, we have C = −2. Completing the
square, it follows that y = −3/2+

√
sin(2x) + 1/4. The solution is defined for sin(2x)+1/4 ≥

0. That is, −0.126 ≤ x ≤ 1.44. To find where the solution attains its maximum value, we
need to check where y′ = 0. We see that y′ = 0 when 2 cos(2x) = 0. In the interval of
definition above, that occurs when 2x = π/2, or x = π/4.

26. Rewriting this equation as (1 + y2)−1dy = 2(1 + x)dx and integrating both sides, we
have tan−1(y) = 2x + x2 + C. The initial condition implies C = 0. Therefore, the solution
is y = tan(x2 + 2x). The solution is defined as long as −π/2 < 2x + x2 < π/2. We note that
2x + x2 ≥ −1. Further, 2x + x2 = π/2 for x = −2.6 and 0.6. Therefore, the solution is valid
in the interval −2.6 < x < 0.6. We see that y′ = 0 when x = −1. Furthermore, it can be
verified that y′′(x) > 0 for all x in the interval of definition. Therefore, y attains a global
minimum at x = −1.

27.

(a) First, we rewrite the equation as dy/[y(4 − y)] = tdt/3. Then, using partial fractions,
we write

1/4

y
dy +

1/4

4− y
dy =

t

3
dt.

Integrating both sides, we have

1

4
ln |y| − 1

4
ln |4− y| = t2

6
+ C

=⇒ ln

∣∣∣∣
y

y − 4

∣∣∣∣ =
2

3
t2 + C

=⇒
∣∣∣∣

y

y − 4

∣∣∣∣ = Ce2t2/3.

From the equation, we see that y0 = 0 =⇒ C = 0 =⇒ y(t) = 0 for all t. Otherwise,
y(t) > 0 for all t or y(t) < 0 for all t. Therefore, if y0 > 0 and |y/(y−4)| = Ce2t2/3 →∞,
we must have y → 4. On the other hand, if y0 < 0, then y → −∞ as t → ∞. (In
particular, y → −∞ in finite time.)
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(b) For y0 = 0.5, we want to find the time T when the solution first reaches the value 3.98.
Using the fact that |y/(y − 4)| = Ce2t2/3 combined with the initial condition, we have
C = 1/7. From this equation, we now need to find T such that |3.98/.02| = e2T 2/3/7.
Solving this equation, we have T = 3.29527.

28.

(a) Rewriting the equation as y−1(4− y)−1dy = t(1 + t)−1dt and integrating both sides, we
have ln |y| − ln |y− 4| = 4t− 4 ln |1+ t|+C. Therefore, |y/(y− 4)| = Ce4t/(1+ t)4 →∞
as t →∞ which implies y → 4.

(b) The initial condition y(0) = 2 implies C = 1. Therefore, y/(y− 4) = −e4t/(1+ t)4. Now
we need to find T such that 3.99/− .01 = −e4T /(1+T )4. Solving this equation, we have
T = 2.84367.

(c) Using our results from part (b), we note that y/(y − 4) = y0/(y0 − 4)e4t/(1 + t)4.
We want to find the range of initial values y0 such that 3.99 < y < 4.01 at time t = 2.
Substituting t = 2 into the equation above, we have y0/(y0−4) = (3/e2)4y(2)/(y(2)−4).
Since the function y/(y − 4) is monotone, we need only find the values y0 satisfying
y0/(y0 − 4) = −399(3/e2)4 and y0/(y0 − 4) = 401(3/e2)4. The solutions are y0 = 3.6622
and y0 = 4.4042. Therefore, we need 3.6622 < y0 < 4.4042.

29. We can rewrite the equation as
(

cy + d

ay + b

)
dy = dx =⇒ cy

ay + b
+

d

ay + b
dy = dx =⇒ c

a
− bc

a2y + ab
+

d

ay + b
dy = dx.

Then integrating both sides, we have

c

a
y − bc

a2
ln |a2y + ab|+ d

a
ln |ay + b| = x + C.

Simplifying, we have

c

a
y − bc

a2
ln |a| − bc

a2
ln |ay + b|+ d

a
ln |ay + b| = x + C

=⇒ c

a
y +

(
ad− bc

a2

)
ln |ay + b| = x + C.

Note, in this calculation, since bc
a2 ln |a| is just a constant, we included it with the arbitrary

constant C. This solution will exist as long as a 6= 0 and ay + b 6= 0.

30.

(a) Factoring an x out of each term in the numerator and denominator of the right-hand
side, we have

dy

dx
=

x((y/x)− 4)

x(1− (y/x))
=

(y/x)− 4

1− (y/x)
,

as claimed.
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(b) Letting v = y/x, we have y = xv, which implies that dy/dx = v + x · dv/dx.

(c) Therefore,

v + x · dv

dx
=

v − 4

1− v

which implies that

x · dv

dx
=

v − 4− v(1− v)

(1− v)
=

v2 − 4

1− v
.

(d) To solve the equation above, we rewrite as

1− v

v2 − 4
dv =

dx

x
.

Integrating both sides of this equation, we have

−1

4
ln |v − 2| − 3

4
ln |v + 2| = ln |x|+ C.

Applying the exponential function to both sides of the equation, we have

|v − 2|−1/4|v + 2|−3/4 = C|x|.

(e) Replacing v with y/x, we have

∣∣∣y
x
− 2

∣∣∣
−1/4 ∣∣∣y

x
+ 2

∣∣∣
−3/4

= C|x| =⇒ |x||y−2x|−1/4|y+2x|−3/4 = C|x| =⇒ |y+2x|3|y−2x| = C.

(f)
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x

31.

(a)
dy

dx
= 1 + (y/x) + (y/x)2.

Therefore, the equation is homogeneous.
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(b) The substitution v = y/x results in the equation

v + x
dv

dx
= 1 + v + v2 =⇒ x

dv

dx
= 1 + v2.

This equation can be rewritten as

dv

1 + v2
=

dx

x

which has solution arctan(v) = ln |x| + c. Rewriting back in terms of y, we have
arctan(y/x)− ln |x| = c.

(c)
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32.

(a)
dy

dx
= (y/x)−1 +

3

2
(y/x).

Therefore, the equation is homogeneous.

(b) The substitution v = y/x results in the equation

v + x
dv

dx
=

x2 + 3x2v2

2x2v
=⇒ dv

dx
=

1 + v2

2xv
.

The solution of this separable equation is v2 + 1 = cx. Rewriting back in terms of y, we
have x2 + y2 − cx3 = 0.

(c)
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33.

(a)
dy

dx
=

4(y/x)− 3

2− (y/x)
.

Therefore, the equation is homogeneous.

(b) The substitution v = y/x results in the equation

v + x
dv

dx
=

4v − 3

2− v
=⇒ x

dv

dx
=

v2 + 2v − 3

2− v
.

This equation can be rewritten as

2− v

v2 + 2v − 3
dv =

dx

x
.

Integrating both sides and simplifying, we arrive at the solution |v + 3|−5/4|v − 1|1/4 =
|x| + c. Rewriting back in terms of y, we have |y − x| = c|y + 3x|5. We also have the
solution y = −3x.

(c)

0
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34.

(a)
dy

dx
= −2− y

x

[
2 +

y

x

]−1

.

Therefore, the equation is homogeneous.

(b) The substitution v = y/x results in the equation

v + x
dv

dx
= −2− v

2 + v
=⇒ dv

dx
= −v2 + 5v + 4

x(2 + v)
.

This equation is separable with solution (v +4)2|v +1| = C/x3. Rewriting back in terms
of y, we have |y + x|(y + 4x)2 = c.

(c)

0
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35.

(a)
dy

dx
=

1 + 3(y/x)

1− (y/x)
.

Therefore, the equation is homogeneous.

(b) The substitution v = y/x results in the equation

v + x
dv

dx
=

1 + 3v

1− v
=⇒ x

dv

dx
=

v2 + 2v + 1

1− v
.

This equation can be rewritten as

1− v

v2 + 2v + 1
dv =

dx

x

which has solution − 2
v+1

− ln |v + 1| = ln |x|+ c. Rewriting back in terms of y, we have
2x/(x + y) + ln |x + y| = c. We also have the solution y = −x.
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36.

(a)
dy

dx
= 1 + 3(y/x) + (y/x)2.

Therefore, the equation is homogeneous.

(b) The substitution v = y/x results in the equation

v + x
dv

dx
= 1 + 3v + v2 =⇒ x

dv

dx
= 1 + 2v + v2.

This equation can be rewritten as

dv

1 + 2v + v2
=

dx

x

which has solution −1/(v + 1) = ln |x| + c. Rewriting back in terms of y, we have
x/(x + y) + ln |x| = c. We also have the solution y = −x.

(c)
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37.

(a)
dy

dx
=

1

2
(y/x)−1 − 3

2
(y/x).

Therefore, the equation is homogeneous.

(b) The substitution v = y/x results in the equation

v + x
dv

dx
= 1 +

1

2v
− 3

2
v =⇒ x

dv

dx
=

1− 5v2

2v
.

This equation can be rewritten as

2v

1− 5v2
dv =

dx

x

which has solution −1
5
ln |1 − 5v2| = ln |x| + c. Applying the exponential function,

we arrive at the solution 1 − 5v2 = c/|x|5. Rewriting back in terms of y, we have
|x|3(x2 − 5y2) = c

(c)
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38.

(a)
dy

dx
=

3

2
(y/x)− 1

2
(y/x)−1.

Therefore, the equation is homogeneous.

(b) The substitution v = y/x results in the equation

v + x
dv

dx
=

3

2
v − 1

2
v−1 =⇒ x

dv

dx
=

v2 − 1

2v
.
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This equation can be rewritten as

2v

v2 − 1
dv =

dx

x

which has solution ln |v2 − 1| = ln |x| + c. Applying the exponential function, we have
v2 − 1 = C|x|. Rewriting back in terms of y, we have c|x|3 = (y2 − x2)

(c)
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x

Section 2.3

1. Let Q(t) be the quantity of dye in the tank. We know that

dQ

dt
= rate in − rate out.

Here, fresh water is flowing in. Therefore, no dye is coming in. The dye is flowing out at the
rate of (Q/200)g/l · 2l/min = Q/100 l/min. Therefore,

dQ

dt
= − Q

100
.

The solution of this equation is Q(t) = Ce−t/100. Since Q(0) = 200 grams, C = 200. We
need to find the time T when the amount of dye present is 1% of what it is initially. That
is, we need to find the time T when Q(T ) = 2 grams. Solving the equation 2 = 200e−t/100,
we conclude that T = 100 ln(100) minutes.

2. Let Q(t) be the quantity of salt in the tank. We know that

dQ

dt
= rate in − rate out.

Here, water containing γ g/liter of salt is flowing in at a rate of 2 liters/minute. The salt is
flowing out at the rate of (Q/120)g/l · 2l/min = Q/60 l/min. Therefore,

dQ

dt
= 2γ − Q

60
.
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The solution of this equation is Q(t) = 120γ + Ce−t/60. Since Q(0) = 0 grams, C = −120γ.
Therefore, Q(t) = 120γ[1− e−t/60]. As t →∞, Q(t) → 120γ.

3. Let Q(t) be the quantity of salt in the tank. We know that

dQ

dt
= rate in − rate out.

Here, water containing 1/2 lb/gallon of salt is flowing in at a rate of 2 gal/minute. The salt
is flowing out at the rate of (Q/100)lb/gal · 2gal/min = Q/50 gal/min. Therefore,

dQ

dt
= 1− Q

50
.

The solution of this equation is Q(t) = 50 + Ce−t/50. Since Q(0) = 0 grams, C = −50.
Therefore, Q(t) = 50[1 − e−t/50] for 0 ≤ t ≤ 10 minutes. After 10 minutes, the amount of
salt in the tank is Q(10) = 50[1− e−1/5] ≈ 9.06 lbs. Starting at that time (and resetting the
time variable), the new equation for dQ/dt is given by

dQ

dt
= −Q

50
,

since fresh water is being added. The solution of this equation is Q(t) = Ce−t/50. Since we
are now starting with 9.06 lbs of salt, Q(0) = 9.06 = C. Therefore, Q(t) = 9.06e−t/50. After
10 minutes, Q(10) = 9.06e−1/5 ∼= 7.42 lbs.

4. Let Q(t) be the quantity of salt in the tank. We know that

dQ

dt
= rate in − rate out.

Here, water containing 1 lb/gallon of salt is flowing in at a rate of 3 gal/minute. The salt is
flowing out at the rate of (Q/(200 + t))lb/gal · 2gal/min = 2Q/(200 + t) lb/min. Therefore,

dQ

dt
= 3− 2Q

200 + t
.

This is a linear equation with integrating factor µ(t) = (200 + t)2. The solution of this
equation is Q(t) = 200 + t + C(200 + t)−2. Since Q(0) = 100 lbs, C = −4, 000, 000.
Therefore, Q(t) = 200 + t− 4, 000, 000/(200 + t)2. Since the tank has a net gain of 1 gallon
of water every minute, the tank will reach its capacity after 300 minutes. When t = 300, we
see that Q(300) = 484 lbs. Therefore, the concentration of salt when it is on the point of
overflowing is 121/125 lbs/gallon. The concentration of salt is given by Q(t)/(200+ t) (since
t gallons of water are added every t minutes). Using the equation for Q above, we see that
if the tank had infinite capacity, the concentration would approach 1 as t →∞.

5.

(a) Let Q(t) be the quantity of salt in the tank. We know that

dQ

dt
= rate in − rate out.
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Here, water containing
1

4

(
1 +

1

2
sin t

)
oz/gallon of salt is flowing in at a rate of 2

gal/minute. The salt is flowing out at the rate of Q/100oz/gal · 2gal/min = Q/50
oz/min. Therefore,

dQ

dt
=

1

2
+

1

4
sin t− Q

50
.

This is a linear equation with integrating factor µ(t) = et/50. The solution of this equation
is Q(t) = (12.5 sin t−625 cos t+63150e−t/50)/2501+C. The initial condition, Q(0) = 50
oz implies C = 25. Therefore, Q(t) = 25 + (12.5 sin t− 625 cos t + 63150e−t/50)/2501.

(b)
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(c) The amount of salt approaches a steady state, which is an oscillation of amplitude 1/4
about a level of 25 oz.

6.

(a) Using the Principle of Conservation of Energy, we know that the kinetic energy of a
particle after it has fallen from a height h is equal to its potential energy at a height t.
Therefore, mv2/2 = mgh. Solving this equation for v, we have v =

√
2gh.

(b) The volumetric outflow rate is (outflow cross-sectional area)× (outflow velocity): αa
√

2gh.
The volume of water in the tank is

V (h) =

∫ h

0

A(u) du

where A(u) is the cross-sectional area of the tank at height u. By the chain rule,

dV

dt
=

dV

dh
· dh

dt
= A(h)

dh

dt
.

Therefore,
dV

dt
= A(h)

dh

dt
= −αa

√
2gh.
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(c) The cross-sectional area of the cylinder is A(h) = π(1)2 = π. The outflow cross-sectional
area is a = π(.1)2 = .01π. From part (a), we take α = 0.6 for water. Then by part (b),
we have

π
dh

dt
= −0.006π

√
2gh.

This is a separable equation with solution h(t) = 0.000018gt2 − 0.006
√

2gh(0)t + h(0).
Setting h(0) = 3 and g = 9.8, we have h(t) = 0.0001764t2 − 0.046t + 3. Then h(t) = 0
implies t ≈ 130.4 seconds.

7.

(a) The equation for S is
dS

dt
= rS

with an initial condition S(0) = S0. The solution of the equation is S(t) = S0e
rt. We

want to find the time T such that S(T ) = 2S0. Our equation becomes 2S0 = S0e
rT .

Dividing by S0 and applying the logarithmic function to our equation, we have rT =
ln(2). That is, T = ln(2)/r.

(b) If r = .07, then T = ln(2)/.07 ∼= 9.90 years.

(c) By part (a), we also know that r = ln(2)T where T is the doubling time. If we want the
investment to double in T = 8 years, then we need r = ln(2)/8 ∼= 8.66%.

8.

(a) The equation for S is given by
dS

dt
= rS + k.

This is a linear equation with solution S(t) =
k

r
[ert − 1].

(b) Using the function in part (a), we need to find k so that S(40) = 1, 000, 000 assuming
r = .075. That is, we need to solve

1, 000, 000 =
k

.075
[e.075·40 − 1].

The solution of this equation is k ∼= 3930.

(c) Now we assume that k = 2000 and want to find r. Our equation becomes

1, 000, 000 =
2000

r
[e40r − 1].

The solution of this equation is approximately 9.77%.

9.

34



(a) Let S(t) be the balance due on the loan at time t. To determine the maximum amount
the buyer can afford to borrow, we will assume that the buyer will pay $800 per month.
Then

dS

dt
= .09S − 12(800).

The solution is given by equation (18), S(t) = S0e
.09t− 106, 667(e.09t− 1). If the term of

the mortgage is 20 years, then S(20) = 0. Therefore, 0 = S0e
.09(20)−106, 667(e.09(20)−1)

which implies S0 ≈ $89, 035.

(b) Since the homeowner pays $800 per month for 20 years, he ends up paying a total of
$192, 000 for the house. Since the house loan was $89, 035, the rest of the amount was
interest payments. Therefore, the amount of interest was approximately $102, 965.

10.

(a) Let S(t) be the balance due on the loan at time t. Taking into account that t is measured
in years, we rewrite the monthly payment as 800(1 + t/10) where t is now in years. The
equation for S is given by

dS

dt
= .09S − 12(800)(1 + t/10).

This is a linear equation. Its solution is S(t) = 225185 + 10667t + ce.09t. The initial
condition S(0) = 100, 000 implies c = −125185. Therefore, the particular solution is
S(t) = 225185 + 10667t− 125185e.09t. To find when the loan will be paid, we just need
to solve S(t) = 0. Solving this equation, we conclude that the loan will be paid off in
11.28 years (135.36 months).

(b) From part (a), we know the general solution is given by S(t) = 225185 + 10667t + ce.09t.
Now we want to find c such that S(20) = 0. The solution of this equation is c = −72486.
Therefore, the solution of the equation will be S(t) = 225185 + 10667 − 72846e.09t.
Therefore, S(0) = 225185− 72846 = 152699.

11.

(a) If S0 is the initial balance, then the balance after one month is

S1 = initial balance + interest - monthly payment

= S0 + rS0 − k.

Similarly,

S2 = S1 + rS1 − k

= (1 + r)S1 − k.

In general,
Sn = (1 + r)Sn−1 − k.
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(b) R = 1 + r implies Sn = RSn−1 − k. Therefore,

S1 = RS0 − k

S2 = RS1 − k = R[RS0 − k]− k = R2S0 − (R + 1)k

S3 = RS2 − k = R[R2S0 − (R + 1)k]− k = R3S0 − (R2 + R + 1)k.

(c) We check the base case, n = 1. We see that

S1 = RS0 − k = RS0 −
(

R− 1

R− 1

)
k,

which implies that that the condition is satisfied for n = 1. We assume that

Sn = RnS0 − Rn − 1

R− 1
k

to show that

Sn+1 = Rn+1S0 − Rn+1 − 1

R− 1
k.

We see that

Sn+1 = RSn − k

= R

[
RnS0 − Rn − 1

R− 1
k

]
− k

= Rn+1S0 −
(

Rn+1 −R

R− 1

)
k − k

= Rn+1S0 −
(

Rn+1 −R

R− 1

)
k −

(
R− 1

R− 1

)
k

= Rn+1S0 −
(

Rn+1 −R + R− 1

R− 1

)
k

= Rn+1S0 −
(

Rn+1 − 1

R− 1

)
k.

(d) We are assuming that S0 = 20, 000 and r = .08/12. We need to find k such that S48 = 0.
Our equation becomes

S48 = R48S0 −
(

R48 − 1

R− 1

)
k = 0.

Therefore, (
(1 + .08/12)48 − 1

.08/12

)
k =

(
1 +

.08

12

)48

· 20, 000,

which implies k ≈ 488.26, which is very close to the result in example 2.

12.
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(a) The general solution is Q(t) = Q0e
−rt. If the half-life is 5730, then Q0/2 = Q0e

−5730r

implies −5730r = ln(1/2). Therefore, r = 1.2097× 10−4 per year.

(b) Therefore, Q(t) = Q0e
−1.2097×10−4t.

(c) Given that Q(T ) = Q0/5, we have the equation 1/5 = e−1.2097×10−4T . Solving for T , we
have T = 13, 304.65 years.

13. Let P (t) be the population of mosquitoes at any time t, measured in days. Then

dP

dt
= rP − 20, 000.

The solution of this linear equation is P (t) = P0e
rt − 20,000

r
(ert − 1). In the absence of

predators, the equation is dP1/dt = rP1. The solution of this equation is P1(t) = P0e
rt.

Since the population doubles after 7 days, we see that 2P0 = P0e
7r. Therefore, r = ln(2)/7 =

.09902 per day. Therefore, the population of mosquitoes at any time t is given by P (t) =
200, 000e.099t − 201, 997(e.099t − 1) = 201, 997− 1997e.099t.

14.

(a) The solution of this separable equation is given by y(t) = exp[2/10+ t/10− 2 cos(t)/10].
The doubling-time is found by solving the equation 2 = exp[2/10 + t/10− 2 cos(t)/10].
The solution of this equation is given by τ ≈ 2.9632.

(b) The differential equation will be dy/dt = y/10 with solution y(t) = y(0)et/10. The
doubling time is found by setting y(t) = 2y(0). In this case, the doubling time is
τ ≈ 6.9315.

(c) Consider the differential equation dy/dt = (0.5+sin(2πt))y/5. This equation is separable
with solution y(t) = exp[(1+πt−cos(2πt))/(10π)]. The doubling time is found by setting
y(t) = 2. The solution is given by 6.9167.

(d)
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15.
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(b) Based on the graph, we estimate that yc ≈ 0.83.

(c) We sketch the graphs below for k = 1/10 and k = 3/10, respectively. Based on these
graphs, we estimate that yc(1/10) ≈ .41 and yc(3/10) ≈ 1.24.
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(d) From our results from above, we conclude that yc is a linear function of k.
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16. Let T (t) be the temperature of the coffee at time t. The governing equation is given by

dT

dt
= −k(T − 70).

This is a linear equation with solution T (t) = 70 + ce−kt. The initial condition T (0) = 200
implies c = 130. Therefore, T (t) = 70 + 130e−kt. Using the fact that T (1) = 190, we see
that 190 = 70 + 130e−k which implies k = − ln(12/13) ∼= .08 per minute. To find when the
temperature reaches 150 degrees, we just need to solve T (t) = 70 + 130e−0.08t = 150. The
solution of this equation is t = − ln(80/130)/.08 ∼= 6.07 minutes.

17.

(a) The solution of this separable equation is given by

u3 =
u3

0

3αu3
0t + 1

.

Since u0 = 2000, the specific solution is

u(t) =
2000

(6t/125 + 1)1/3
.

(b)
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(c) We look for τ so that u(τ) = 600. The solution of this equation is t ≈ 750.77 seconds.

18.

(a) The integrating factor is µ(t) = ekt. Then u = e−kt
∫

kekt(T0 + T1 cos(ωt)) = ce−kt +
T0 + kT1(k cos ωt+ω sin ωt)/(k2 +ω2). Since e−kt → 0 as t →∞, we see that the steady
state is S(t) = T0 + kT1(k cos(ωt) + ω sin(ωt))/(k2 + ω2).

(b)
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The amplitude R of the oscillatory part of S(t) is approximately 9 degrees Fahrenheit.
The time lag τ between maxima is approximately 3.5 seconds.

(c) From above, the oscillatory part of S(t) is given by

kT1
k cos(ωt) + ω sin(ωt)

k2 + ω2
=

kT1√
k2 + ω2

(cos(ωt) cos(ωτ) + sin(ωt) sin(ωτ)

for τ such that cos(ωτ) = k/
√

k2 + ω2 and sin(ωτ) = ω/
√

k2 + ω2. That is, τ =
1
ω

arctan(ω/k). Further, letting R = kT1/
√

k2 + ω2, we can write the oscillatory part of
S(t) as

R[cos(ωt) cos(ωτ) + sin(ωt) sin(ωτ)] = R cos(ω(t− τ)).

Below we show graphs of R and τ versus k.
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19.

(a) The differential equation for Q is

dQ

dt
= kr + P − Q(t)

V
r.

Therefore,

V
dc

dt
= kr + P − c(t)r.

The solution of this equation is c(t) = k + P/r + (c0 − k − P/r)e−rt/V . As t → ∞,
c(t) → k + P/r.

(b) In this case, we will have c(t) = c0e
−rt/V . The reduction times are T50 = ln(2)V/r and

T10 = ln(10)V/r.

(c) Using the results from part (b), we have: Superior, T = 431 years; Michigan, T = 71.4
years; Erie, T = 6.05 years; Ontario, T = 17.6 years.

20.

(a) Assuming no air resistance, we have dv/dt = −9.8. Therefore, v(t) = −9.8t + v0 =
−9.8t + 20 and its position at time t is given by s(t) = −4.9t2 + 20t + 30. When the
ball reaches its max height, the velocity will be zero. We see that v(t) = 0 implies
t = 20/9.8 ∼= 2.04 seconds. When t = 2.04, we see that s(2.04) ∼= 50.4 meters.

(b) Solving s(t) = −4.9t2 + 20t + 30 = 0, we see that t = 5.248 seconds.

(c)
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21.

(a) We have mdv/dt = −v/30 − mg. Given the conditions from problem 20, we see that
the solution is given by v(t) = −44.1 + 64.1e−t/4.5. The ball will reach its max height
when v(t) = 0. This occurs at t = 1.683 seconds. The height of the ball is given by
s(t) = −318.45−44.1t−288.45e−t/4.5. When t = 1.683, we have s(1.683) = 45.78 meters,
the maximum height.

(b) The ball will hit the ground when s(t) = 0. This occurs when t = 5.128 seconds.

(c)
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22.

(a) The equation for the upward motion is mdv/dt = −µv2 −mg where µ = 1/1325. Using
the data from exercise 20, and the fact that this equation is separable, we see its solution
is given by v(t) = 44.133 tan(.425− .222t). Setting v(t) = 0, we see the ball will reach its
max height at t = 1.916 seconds. Integrating v(t), we see the position at time t is given
by s(t) = 198.75 ln(cos(0.222t − 0.425)) + 48.57. Therefore, the max height is given by
s(1.916) = 48.56 meters.

(b) The differential equation for the downward motion is mdv/dt = +µv2−mg. The solution
of this equation is given by v(T ) = 44.13(1 − et/2.25)/(1 + et/2.25). Integrating v(t), we
see that the position is given by s(t) = 99.29 ln(et/2.25/(1 + et/2.25)2) + 186.2. Setting
s(t) = 0, we see that the ball will spend t = 3.276 seconds going downward before hitting
the ground. Combining this time with the amount of time the ball spends going upward,
1.916 seconds, we conclude that the ball will hit the ground 5.192 seconds after being
thrown upward.

(c)
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23.

(a) Measure the positive direction of motion downward. Then the equation of motion is
given by

m
dv

dt
=

{ −0.75v + mg 0 < t < 10
−12v + mg t > 10.

For the first 10 seconds, the equation becomes dv/dt = −v/7.5 + 32 which has solution
v(t) = 240(1− e−t/7.5). Therefore, v(10) = 176.7 feet per second.

(b) Integrating the velocity function from part (a), we see that the height of the skydiver at
time t (0 < t < 10) is given by s(t) = 240t+1800e−t/7.5−1800. Therefore, s(10) = 1074.5
feet.

(c) After the parachute opens, the equation for v is given by dv/dt = −32v/15 + 32 (as
discussed in part (a)). We will reset t to zero. The solution of this differential equation
is given by v(t) = 15 + 161.7e−32t/15. As t → ∞, v(t) → 15. Therefore, the limiting
velocity is vl = 15 feet/second.

(d) Integrating the velocity function from part (c), we see that the height of the sky diver
after falling t seconds with his parachute open is given by s(t) = 15t − 75.8e−32t/15 +
1150.3. To find how long the skydiver is in the air after the parachute opens, we find T
such that s(T ) = 0. Solving this equation, we have T = 256.6 seconds.

(e)
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24.

(a) The equation of motion is given by dv/dx = −µv.

(b) The speed of the sled satisfies ln(v/v0) = −µx. Therefore, µ must satisfy ln(15/150) =
−2000µ. Therefore, µ = ln(10)/2000 f−1.

(c) The solution of dv/dt = −µv2 can be expressed as 1/v − 1/v0 = µt. Using the fact that
1 mi/hour ≈ 1.467 feet/second, the elapsed time is t ≈ 35.56 seconds.

25.

(a) Measure the positive direction of motion upward. The equation of motion is given by
mdv/dt = −kv − mg. The solution of this equation is given by v(t) = −mg/k +
(v0 + mg/k)e−kt/m. Solving v(t) = 0, we see that the mass will reach its max height
tm = (m/k) ln[(mg + kv0)/mg] seconds after being projected upward. Integrating the
velocity equation, we see that the position of the mass at this time will be given by the
position equation

s(t) = −mgt/k +

[(m

k

)2

g +
mv0

k

]
(1− e−kt/m).

Therefore, the max height reached is

xm = s(tm) =
mv0

k
− g

(m

k

)2

ln

[
mg + kv0

mg

]
.

,

(b) These formulas for tm and xm come from the fact that for δ << 1, ln(1 + δ) = δ− 1
2
δ2 +

1
3
δ3 − 1

4
δ4 + . . .. This formula is just Taylor’s formula.

(c) Consider the result for tm in part (b). Multiplying the equation by g
v0

, we have

tmg

v0

=

[
1− 1

2

kv0

mg
+

1

3

(
kv0

mg

)2

− . . .

]
.

The units on the left, must match the units on the right. Since the units for tmg/v0 =
(s ·m/s2)/(m/s), the units cancel. As a result, we can conclude that kv0/mg is dimen-
sionless.

26.

(a) The equation of motion is given by mdv/dt = −kv −mg. The solution of this equation
is given by v(t) = −mg/k + (v0 + mg/k)e−kt/m.

(b) Applying L’Hospital’s rule, as k → 0, we have

lim
k→0

−mg/k + (v0 + mg/k)e−kt/m = v0 − gt.
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(c)
lim
m→0

−mg/k + (v0 + mg/k)e−kt/m = 0.

27.

(a) The equation of motion is given by

m
dv

dt
= −6πµav + ρ′

4

3
πa3g − ρ

4

3
πa3g.

We can rewrite this equation as

v′ +
6πµa

m
v =

4

3

πa3g

m
(ρ′ − ρ).

Multiplying by the integrating factor e6πµat/m, we have

(e6πµat/mv)′ =
4

3

πa3g

m
(ρ′ − ρ)e6πµat/m.

Integrating this equation, we have

v = e−6πµat/m

[
2a2g(ρ′ − ρ)

9µ
e6πµat/m + C

]

=
2a2g(ρ′ − ρ)

9µ
+ Ce−6πµat/m.

Therefore, we conclude that the limiting velocity is vL = (2a2g(ρ′ − ρ))/9µ.

(b) By the equation above, we see that the force exerted on the droplet of oil is given by

Ee = −6πµav + ρ′
4

3
πa3g − ρ

4

3
πa3g.

If v = 0, then solving the above equation for e, we have

e =
4πa3g(ρ′ − ρ)

3E
.

28.

(a) The equation is given by mdv/dt = −kv −mg. The solution of this equation is v(t) =
−(mg/k)(1 − e−kt/m). Integrating, we see that the position function is given by x(t) =
−(mg/k)t + (m/k)2g(1 − e−kt/m) + 30. First, by setting x(t) = 0, we see that the ball
will hit the ground t = 3.63 seconds after it is dropped. Then v(3.63) = 11.58 m/second
will be the speed when the mass hits the ground.
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(b) In terms of displacement, we have mvdv/dx = −kv + mg. This equation comes from
applying the chain rule: dv/dt = dv/dx·dx/dt = vdv/dx. The solution of this differential
equation is given by

x(v) = −mv

k
− m2g

k2
ln

∣∣∣∣
mg − kv

mg

∣∣∣∣ .

Plugging in the given values for k, m, g, we have x(v) = −1.25v − 15.31 ln |0.0816v − 1|.
If v = 10, then x(10) = 13.45 meters.

(c) Using the equation for x(v) above, we set x(v) = 30, v = 10, m = 0.25, g = 9.8. Then
solving for k, we have k = 0.24.

29.

(a) The equation of motion is given by mdv/dt = −GMm/(R + x)2. By the chain rule,

m
dv

dx
· dx

dt
= −G

Mm

(R + x)2
.

Therefore,

mv
dv

dx
= −G

Mm

(R + x)2
.

This equation is separable with solution v2 = 2GM(R +x)−1 +2gR− 2GM/R. Here we
have used the initial condition v0 =

√
2gR. From physics, we know that g = GM/R2.

Using this substitution, we conclude that v(x) =
√

2g[R/
√

R + x].

(b) By part (a), we know that dx/dt = v(x) =
√

2g[R/
√

R + x]. We want to solve this
differential equation with the initial condition x(0) = 0. This equation is separable
with solution x(t) = [3

2
(
√

2gRt + 2
3
R3/2]2/3 − R. We want to find the time T such that

x(T ) = 240, 000. Solving this equation, we conclude that T ≈ 50.6 hours.

30.

(a) dv/dt = 0 implies v is constant, but clearly by the initial condition v = u cos A. dw/dt =
−g implies w = −gt + C, but also by the initial condition w = −gt + u sin A.

(b) The equation dx/dt = v = u cos A along with the initial condition implies x(t) = u cos At.
The equation dy/dt = w = −gt + u sin A along with the initial condition implies y(t) =
−gt2/2 + u sin At + h.

(c) Below we have plotted the trajectory of the ball in the cases π/4, π/3 and π/6 respec-
tively.
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(d) First, let T be the time it takes for the ball to travel L feet horizontally. Using the
equation for x, we know that x(T ) = u cos AT = L implies T = L/u cos A. Then,
when the ball reaches this wall, we need the height of the ball to be at least H feet.
That is, we need y(T ) ≥ H. Now y(t) = −16t2 + u sin At + 3 implies we need y(T ) =
−16L2/(u2 cos2(A)) + L tan A + 3 ≥ H.

(e) If L = 350 and H = 10, then our inequality becomes

− 1, 960, 000

(u2 cos2(A))
+ 350 tan A + 3 ≥ 10.
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Now if u = 110, then our inequality becomes

− 162

cos2(A)
+ 350 tan(A) ≥ 7.

Solving this inequality, we conclude that 0.63 rad ≤ A ≤ 0.96 rad.

(f) We rewrite the inequality in part (c) as

cos2(A)(350 tan A− 7) ≥ 1, 960, 000

u2
.

In order to determine the minimum value necessary, we will maximize the function
on the left-hand side. Letting f(A) = cos2(A)(350 tan A − 7), we see that f ′(A) =
350 cos(2A)+7 sin(2A). Therefore, f ′(A) = 0 implies tan(2A) = −50. For 0 < A < π/2,
we see that this occurs at A = 0.7954 radians. Substituting this value for A into the
inequality above, we conclude that

u2 ≥ 11426.24.

Therefore, the minimum velocity necessary is 106.89 mph and the optimal angle neces-
sary is 0.7954 radians.

31.

(a) The initial conditions are v(0) = u cos(A) and w(0) = u sin(A). Therefore, the solutions
of the two equations are v(t) = u cos(A)e−rt and w(t) = −g/r + (u sin(A) + g/r)e−rt.

(b) Now x(t) =
∫

v(t) = u
r
cos(A)(1− e−rt), and

y(t) =

∫
w(t) = −gt

r
+

(g + ur sin(A) + hr2)

r2
−

(u

r
sin(A) +

g

r2

)
e−rt.

(c) Below we show trajectories for the cases A = π/4, π/3 and π/6, respectively.
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(d) Let T be the time it takes the ball to go 350 feet horizontally. Then from above, we see
that e−T/5 = (u cos(A)− 70)/u cos(A). At the same time, the height of the ball is given
by y(T ) = −160T + 267 + 125u sin(A) − (800 + 5u sin(A))[(u cos(A) − 70)/u cos(A)].
Therefore, u and A must satisfy the inequality

800 ln

[
u cos(A)− 70

u cos(A)

]
+ 267 + 125u sin(A)− (800 + 5u sin(A))

[
u cos(A)− 70

u cos(A)

]
≥ 10.

32.

(a) Solving equation (i), we have y′(x) = [(k2−y)/y]1/2. The positive answer is chosen since
y is an increasing function of x.

(b) y = k2 sin2 t =⇒ dy/dt = 2k2 sin t cos t. Substituting this into the equation in part (a),
we have

2k2 sin t cos tdt

dx
=

cos t

sin t
.

Therefore, 2k2 sin2 tdt = dx.

(c) Letting θ = 2t, we have k2 sin2(θ/2)dθ = dx. Integrating both sides, we have x(θ) =
k2(θ − sin θ)/2. Further, using the fact that y = k2 sin2 t, we conclude that y =
k2 sin2(θ/2) = k2(1− cos(θ))/2.
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(d) From part (c), we see that y/x = (1− cos θ)/(θ− sin θ). If x = 1 and y = 2, the solution
of the equation is θ ≈ 1.401. Substituting that value of θ into either of the equations in
part (c), we conclude that k ≈ 2.193.

Section 2.4

1. Rewriting the equation as

y′ +
ln t

t− 3
y =

2t

t− 3

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
0 < t < 3.

2. Rewriting the equation as

y′ +
1

t(t− 4)
y = 0

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
0 < t < 4.

3. By Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
π/2 < t < 3π/2.

4. Rewriting the equation as

y′ +
2t

4− t2
y =

3t2

4− t2

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
−∞ < t < −2.

5. Rewriting the equation as

y′ +
2t

4− t2
y =

3t2

4− t2

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
−2 < t < 2.

6. Rewriting the equation as

y′ +
1

lnt
y =

cot t

lnt

and using Theorem 2.4.1, we conclude that a solution is guaranteed to exist in the interval
1 < t < π.

7. Using the fact that

f =
t− y

2t + 5y
=⇒ fy =

3t− 10y

(2t + 5y)2
,

we see that the hypothesis of Theorem 2.4.2 are satisfied as long as 2t + 5y 6= 0.

8. Using the fact that

f = (1− t2 − y2)1/2 =⇒ fy = − y

(1− t2 − y2)1/2
,

we see that the hypothesis of Theorem 2.4.2 are satisfied as long as t2 + y2 < 1.
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9. Using the fact that

f =
ln|ty|

1− t2 + y2
=⇒ fy =

1− t2 + y2 − 2y2 ln |ty|
y(1− t2 + y2)2

,

we see that the hypothesis of Theorem 2.4.2 are satisfied as long as y, t 6= 0 and 1−t2+y2 6= 0.

10. Using the fact that

f = (t2 + y2)3/2 =⇒ fy = 3y(t2 + y2)1/2,

we see that the hypothesis of Theorem 2.4.2 are satisfied for all t ∈ R.

11. Using the fact that

f =
1 + t2

3y − y2
=⇒ fy = −(1 + t2)(3− 2y)

(3y − y2)2
,

we see that the hypothesis of Theorem 2.4.2 are satisfied as long as y 6= 0, 3.

12. Using the fact that

f =
(cot t)y

1 + y
=⇒ fy =

1

(1 + y)2
,

we see that the hypothesis of Theorem 2.4.2 are satisfied as long as y 6= −1, t 6= nπ for
n = 0, 1, 2 . . ..

13. The equation is separable, ydy = −4tdt. Integrating both sides, we conclude that
y2/2 = −2t2 + y2

0/2 for y0 6= 0. The solution is defined for y2
0 − 4t2 ≥ 0.

14. The equation is separable and can be written as dy/y2 = 2tdt. Integrating both sides,
we arrive at the solution y = y0/(1− y0t

2). For y0 > 0, solutions exist as long as t2 < 1/y0.
For y0 ≤ 0, solutions exist for all t.

15. The equation is separable and can be written as dy/y3 = −dt. Integrating both sides,
we arrive at the solution y = y0/(

√
2ty2

0 + 1). Solutions exist as long as 2y2
0t + 1 > 0.

16. The equation is separable and can be written as ydy = t2dt/(1 + t3). Integrating both
sides, we arrive at the solution y = ±(2

3
ln |1 + t3|+ y2

0)
1/2. The sign of the solution depends

on the sign of the initial data y0. Solutions exist as long as 2
3
ln |1 + t3|+ y2

0 ≥ 0; that is, as

long as y2
0 ≥ −2

3
ln |1 + t3|. We can rewrite this inequality as |1 + t3| ≥ e−3y2

0/2. In order for
the solution to exist, we need t > −1 (since the term t2/(1 + t3) has a singularity at t = −1.
Therefore, we can conclude that our solution will exist for [e−3y2

0/2 − 1]1/3 < t < ∞.

17.
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–4

–2

0

2

4

y(t)

–2 –1 1 2
t

If y0 > 0, then y → 3. If y0 = 0, then y = 0. If y0 < 0, then y → −∞.

18.

–4

–2

2

4

6

8

10

y(t)

–2 –1 1 2
t

If y0 ≥ 0, then y → 0. If y0 < 0, then y → −∞.

19.

–5

0

5

10

15

y(t)

–2 –1 1 2
t

If y0 > 9, then y →∞. If y0 < 9, then y → 0.

20.
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t

If y0 < yc ≈ −0.019, then y → −∞. Otherwise, y is asymptotic to
√

t− 1.

21.

(a) We know that the family of solutions given by equation (19) are solutions of this initial-
value problem. We want to determine if one of these passes through the point (1, 1).
That is, we want to find t0 > 0 such that if y = [2

3
(t− t0)]

3/2, then (t, y) = (1, 1). That
is, we need to find t0 > 0 such that 1 = 2

3
(1 − t0). But, the solution of this equation is

t0 = −1/2.

(b) From the analysis in part (a), we find a solution passing through (2, 1) by setting t0 = 1/2.

(c) Since we need y0 = ±[2
3
(2− t0)]

3/2, we must have |y0| ≤ [4
3
]3/2.

22.

(a) First, it is clear that y1(2) = −1 = y2(2). Further,

y′1 = −1 =
−t + [(t− 2)2]1/2

2
=
−t + (t2 + 4(1− t))1/2

2

and

y′2 = − t

2
=
−t + (t2 − t2)1/2

2
.

The function y1 is a solution for t ≥ 2. The function y2 is a solution for all t.

(b) Theorem 2.4.2 requires that f and ∂f/∂y be continuous in a rectangle about the point
(t0, y0) = (2,−1). Since f is not continuous if t < 2 and y < −1, the hypothesis of
Theorem 2.4.2 are not satisfied.

(c) If y = ct + c2, then

y′ = c =
−t + [(t + 2c)2]1/2

2
=
−t + (t2 + 4ct + 4c2)1/2

2
.

Therefore, y satisfies the equation for t ≥ −2c.

23.
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(a) φ(t) = e2t =⇒ φ′ = 2e2t. Therefore, φ′ − 2φ = 0. Since (cφ)′ = cφ′, we see that
(cφ)′ − 2cφ = 0. Therefore, cφ is also a solution.

(b) φ(t) = 1/t =⇒ φ′ = −1/t2. Therefore, φ′ + φ2 = 0. If y = c/t, then y′ = −c/t2.
Therefore, y′ + y2 = −c/t2 + c2/t2 = 0 if and only if c2− c = 0; that is, if c = 0 or c = 1.

24. If y = φ satisfies φ′ + p(t)φ = 0, then y = cφ satisfies y′ + p(t)y = cφ′ + cp(t)φ =
c(φ′ + p(t)φ) = 0.

25. Let y = y1 + y2, then

y′ + p(t)y = y′1 + y′2 + p(t)(y1 + y2) = y′1 + p(t)y1 + y′2 + p(t)y2 = 0.

26.

(a)

y =
1

µ(t)

[∫ t

t0

µ(s)g(s) ds + c

]
=

1

µ(t)

∫ t

t0

µ(s)g(s) ds +
c

µ(t)
.

Therefore, y1 = 1/µ(t) and y2 = 1
µ(t)

∫ t

t0
µ(s)g(s) ds.

(b) For y1 = 1/µ(t) = e−
R

p(t) dt, we have

y′1 + p(t)y1 = −p(t)e−
R

p(t) dt + p(t)e−
R

p(t) dt = 0.

(c) For

y2 =
1

µ(t)

∫ t

t0

µ(s)g(s) ds = e−
R

p(t) dt

∫ t

t0

e
R

p(s) dsg(s) ds,

we have

y′2 + p(t)y2 = −p(t)e−
R

p(t) dt

∫ t

t0

e
R

p(s) dsg(s) ds + e−
R

p(t) dte
R

p(t) dtg(t)

+ p(t)e−
R

p(t) dt

∫ t

t0

e
R

p(s) dsg(s) ds = g(t).

27.

(a) If n = 0, then y(t) = ce−
R

p(t) dt. If n = 1, then y(t) = ce−
R

(p(t)−q(t)) dt.

(b) For n 6= 0, 1, let v = y1−n. Then

v′ = (1− n)y−ny′ = (1− n)y−n[−p(t)y + q(t)yn]

= (1− n)[−p(t)y1−n + q(t)] = (1− n)[−p(t)v + q(t)].

That is, v′ + (1− n)p(t)v = (1− n)q(t).
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28. First, rewrite as

y′ +
2

t
y =

1

t2
y3.

Here, n = 3. Therefore, let v = y1−3 = y−2. Making this substitution, we see that v satisfies
the equation

v′ − 4

t
v = − 2

t2
.

This equation is linear with integrating factor t−4. Therefore, we have
(

1

t4
v′ − 4

t5
v

)
= − 2

t6
,

which can be written as (t−4v)′ = −2/t6. The solution of this equation is given by v =
(2 + ct5)/5t. Then, using the fact that y2 = 1/v, we conclude that y = ±

√
5t/(2 + ct5).

29. First, rewrite as
y′ − ry = −ky2.

Here, n = 2. Therefore, let v = y1−2 = y−1. Making this substitution, we see that v satisfies
the equation

v′ + rv = k.

This equation is linear with integrating factor ert. Therefore, we have

(
ertv′ + rertv

)
= kert,

which can be written as (ertv)′ = kert. The solution of this equation is given by v =
(k + cre−rt)/r. Then, using the fact that y = 1/v, we conclude that y = r/(k + cre−rt).

30. Here n = 3. Therefore, v satisfies

v′ + 2εv = 2σ.

This equation is linear with integrating factor e2εt. Its solution is given by v = (σ+cεe−2εt)/ε.
Then, using the fact that y2 = 1/v, we see that y = ±√ε/

√
σ + cεe−2εt.

31. Here n = 3. Therefore, v satisfies

v′ + 2(Γ cos t + T )v = 2.

This equation is linear with integrating factor e2(Γ sin t+Tt). Therefore,

(
e2(Γ sin t+Tt)v

)′
= 2e2(Γ sin t+Tt)

which implies

v = 2e−2(Γ sin t+Tt)

∫
e2(Γ sin t+Tt) dt + ce−2(Γ sin t+Tt).

Then v = y−2 implies y = ±
√

1/v.

32. The solution of the initial value problem y′ + 2y = 1 is y = 1/2 + ce−2t. For y(0) = 0,
we see that c = −1/2. Therefore, y(t) = 1

2
(1− e−2t) for 0 ≤ t ≤ 1. Then y(1) = 1

2
(1− e−2).
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Next, the solution of y′+2y = 0 is given by y = ce−2t. The initial condition y(1) = 1
2
(1−e−2)

implies ce−2 = 1
2
(1−e−2). Therefore, c = 1

2
(e2−1) and we conclude that y(t) = 1

2
(e2−1)e−2t

for t > 1.

33. The solution of y′ + 2y = 0 with y(0) = 1 is given by y(t) = e−2t for 0 ≤ t ≤ 1. Then
y(1) = e−2. Then, for t > 1, the solution of the equation y′ + y = 0 is y = ce−t. Since we
want y(1) = e−2, we need ce−1 = e−2. Therefore, c = e−1. Therefore, y(t) = e−1e−t = e−1−t

for t > 1.

34.

(a) Multiplying the equation by e
R t

t0
p(s) ds

, we have

(
e
R t

t0
p(s) ds

y
)′

= e
R t

t0
p(s) ds

g(t).

Integrating we have

e
R t

t0
p(s) ds

y(t) = y0 +

∫ t

t0

e
R s

t0
p(r) dr

g(s) ds,

which implies

y(t) = y0e
− R t

t0
p(s) ds

+

∫ t

t0

e−
R t

s p(r) drg(s) ds.

(b) Assume p(t) ≥ p0 > 0 for all t ≥ t0 and |g(t)| ≤ M for all t ≥ t0. Therefore,

∫ t

t0

p(s) ds ≥
∫ t

t0

p0 ds = p0(t− t0)

which implies

e
− R t

t0
p(s) ds ≤ e

− R t
t0

p0 ds
= e−p0(t−t0) ≤ 1 for t ≥ t0.

Also,

∫ t

t0

e−
R t

s p(r) drg(s) ds ≤
∫ t

t0

e−
R t

s p(r) dr|g(s)| ds

≤
∫ t

t0

e−p0(t−s)M ds

≤ M
e−p0(t−s)

p0

∣∣∣∣
t

t0

= M

[
1

p0

− e−p0(t−t0)

p0

]

≤ M

p0
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(c) Let p(t) = 2t + 1 ≥ 1 for all t ≥ 0 and let g(t) = e−t2 . Therefore, |g(t)| ≤ 1 for all t ≥ 0.
By the answer to part (a),

y(t) = e−
R t
0 (2s+1) ds +

∫ t

0

e−
R t

s (2r+1) dre−s2

ds

= e−(t2+t) + e−t2−t

∫ t

0

es ds

= e−t2 .

We see that y satisfies the property that y is bounded for all time t ≥ 0.

Section 2.5
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The only equilibrium point is y∗ = 0. Since f ′(0) = a > 0, the equilibrium point is unstable.
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The equilibrium points are y∗ = 0,−a/b. y∗ = 0 is unstable and y∗ = −a/b is asymptotically
stable since f ′(−a/b) < 0.
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The equilibrium points are y∗ = 0, 1, 2. Since f ′(0), f ′(2) > 0, those equilibrium point are
unstable. Since f ′(1) < 0, y∗ = 1 is asymptotically stable.
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The only equilibrium point is y∗ = 0. Since f ′(0) > 0, the equilibrium point is unstable.
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The only equilibrium point is y∗ = 0. Since f ′(0) < 0, the equilibrium point is asymptotically
stable.
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The only equilibrium point is y∗ = 0. Since f ′(0) < 0, the equilibrium point is asymptotically
stable.
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7.

(a) The function f(y) = k(1 − y)2 = 0 =⇒ y = 1. Therefore, y∗ = 1 is the only critical
point.

(b)
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(c) This is a separable equation with solution y(t) = [y0 + (1 − y0)kt]/[1 + (1 − y0)kt]. If
y0 < 1, then y → 1 as t → ∞. If y0 > 1, then the denominator will go to zero at some
finite time T = 1/(y0 − 1). Therefore, the solution will go towards at infinity.
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The only equilibrium point is y∗ = 0. Since f ′(0) < 0. The equilibrium point is semistable.
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The equilibrium points are y∗ = 0, 1,−1. Since f ′(−1) < 0, y = −1 is asymptotically stable.
Since f ′(1) > 0, y = 1 is unstable. The equilibrium point y = 0 is semistable.
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The equilibrium points are y∗ = 0, 1,−1. Since f ′(−1), f ′(1) < 0, the equilibrium points
y = 1,−1 are asymptotically stable. Since f ′(0) > 0, the equilibrium point y = 0 is
unstable.
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The equilibrium points are y∗ = 0, b2/a2. Since f ′(0) < 0, the equilibrium point y = 0 is
asymptotically stable. Since f ′(b2/a2) > 0, the equilibrium point y = b2/a2 is unstable.
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The equilibrium points are y∗ = 0, 2,−2. The equilibrium point y = 0 is semistable. Since
f ′(−2) > 0, the equilibrium point y = −2 is unstable. Since f ′(2) < 0, the equilibrium point
y = 2 is asymptotically stable.
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The equilibrium points are y∗ = 0, 1. They are both semistable.
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14.

(a) The equation is separable. Using partial fractions, it can be written as
(

1

y
+

1/K

1− y/K

)
dy = rdt.

Integrating both sides and using the initial condition y0 = K/3, we know the solution y
satisfies

ln

∣∣∣∣
y

1− y/K

∣∣∣∣ = rt + ln

∣∣∣∣
K

2

∣∣∣∣ .

To find the time τ such that y = 2y0 = 2K/3, we substitute y = 2K/3 and t = τ
into the equation above. Using the properties of logarithm functions, we conclude that
τ = (ln 4)/r. If r = 0.025, then τ ≈ 55.452 years.

(b) Using the analysis from part (a), we know the general solution satisfies

ln

∣∣∣∣
y

1− y/K

∣∣∣∣ = rt + c.

The initial condition y0 = αK implies c = ln |αK/(1− α)|. Therefore,

ln

∣∣∣∣
y

1− y/K

∣∣∣∣ = rt + ln

∣∣∣∣
αK

1− α

∣∣∣∣ .
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In order to find the time T at which y(T ) = βK, we use the equation above. We conclude
that

T = (1/r) ln |β(1− α)/α(1− β)|.

15.

(a) Below we sketch the graph of f for r = 1 = K.
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The critical points occur at y∗ = 0, K. Since f ′(0) > 0, y∗ = 0 is unstable. Since
f ′(K) < 0, y∗ = K is asymptotically stable.

(b) We calculate y′′. Using the chain rule, we see that

y′′ = ry′
[
ln

(
K

y

)
− 1

]
.

We see that y′′ = 0 when y′ = 0 (meaning y = 0, K) or when ln(K/y)− 1 = 0, meaning
y = K/e. Looking at the sign of y′′ in the intervals (0, K/e) and (K/e,K), we conclude
that y is concave up in the interval (0, K/e) and concave down in the interval (K/e, K).

16.

(a) Using the substitution u = ln(y/K) and differentiating both sides with respect to t, we
conclude that u′ = y′/y. Substitution into the Gompertz equation yields u′ = −ru. The
solution of this equation is u = u0e

−rt. Therefore,

y

K
= exp[ln(y0/K)e−rt].

(b) For K = 80.5× 106, y0/K = 0.25 and r = 0.71, we conclude that y(2) = 57.58× 106.

(c) Solving the equation in part (a) for t, we see that

t = −1

r
ln

[
ln(y/K)

ln(y0/K)

]
.

Plugging in the given values, we conclude that τ = 2.21 years.
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17.

(a)

0

1

2

3

4

5

6

y(t)

2 4 6 8 10
t

(b) Consider f(y) = −0.25(1− y)[1− (y/4)]y. We need to differentiate f(y) with respect to
y. We see that

f ′(y) = −0.25

(
3

4
y2 − 5

2
y + 1

)
.

Therefore, f ′(y) = 0 implies 3y2 − 10y + 4 = 0 or y =
5±√13

3
.

(c) Since this is a separable equation, we can integrate the equation as follows:
∫

dy

(1− y)(1− (y/4))y
=

∫
−0.25 dt.

Using partial fractions, we can rewrite the left-hand side as

1

(1− y)(1− (y/4))y
=

4/3

1− y
+

−1/12

1− (y/4)
+

1

y
.

Therefore,
∫

dy

(1− y)(1− (y/4))y
= −4

3
ln |1− y|+ 1

3
ln |1− (y/4)|+ ln |y|.

If y(0) = 2, then y(t) → 4 as t →∞ and moreover, 1 < y(t) < 4 for all t. Therefore, for
1 < y0 < 4,

−4

3
ln |1− y|+ 1

3
ln |1− (y/4)|+ ln |y| = −4

3
ln(y − 1) +

1

3
ln(1− (y/4)) + ln(y)

= ln

(
y(1− (y/4))1/3

(y − 1)4/3

)
.

We conclude that
y(1− (y/4))1/3

(y − 1)4/3
= Ce−0.25t.
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If y(0) = 2, then C = 22/3. Then if t = 5, we conclude that y ≈ 3.625. Similarly, for
y0 > 4, we conclude that

y((y/4)− 1)1/3

(y − 1)4/3
= Ce−0.25t.

(d) Consider the equation
y(1− (y/4))1/3

(y − 1)4/3
= Ce−0.25t

found in part (c). If y0 = 2, then C = 22/3. Letting y(t) = 3.95 and solving for t, we see
that t ≈ 7.97. Similarly, using the equation found in part (c) for y0 > 4, we see that if
y0 = 6, then y ≤ 4.05 for t < 7.97. For all initial data 2 < y0 < 6, the conclusion also
holds.

18.

(a) The surface area of the cone is given by

S = πa
√

h2 + a2 + πa2 = πa2(
√

(h/a)2 + 1 + 1)

=
πa2h

3
· 3

h

(√
(h/a)2 + 1 + 1

)

= cπ

(
πa2h

3

)2/3

·
(

3a

πh

)2/3

= cπ

(
3a

πh

)2/3

V 2/3.

Therefore, if the rate of evaporation is proportional to the surface area, then rate out =
απ(3a/πh)2/3V 2/3. Therefore,

dV

dt
= rate in− rate out

= k − απ

(
3a

πh

)2/3 (π

3
a2h

)2/3

= k − απ

(
3a

πh

)2/3

V 2/3.

(b) The equilibrium volume can be found by setting dV/dt = 0. We see that the equilibrium
volume is

V =

(
k

απ

)3/2 (
πh

3a

)
.

To find the equilibrium height, we use the fact that the height and radius of the conical
pond maintain a constant ratio. Therefore, if he, ae represent the equilibrium values for
the h and a, we must have he/ae = h/a. Further, we notice that the equilibrium volume
can be written as

V =
π

3

(
k

απ

)(
k

απ

)1/2 (
h

a

)
=

π

3
a2

eh
2
e,
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where he = (k/απ)1/2(h/a) and ae = (kαπ)1/2. Since f ′(V ) = −2
3
απ(3a/πh)2/3V −1/3 <

0, the equilibrium is asymptotically stable.

(c) In order to guarantee that the pond does not overflow, we need the rate of water in to
be less than or equal to the rate of water out. Therefore, we need k − απa2 ≤ 0.

19.

(a) The rate of increase of the volume is given by

dV

dt
= k − αa

√
2gh.

Since the cross-section is constant, dV/dt = Adh/dt. Therefore,

dh

dt
= (k − αa

√
2gh)/A.

(b) Setting dh/dt = 0, we conclude that the equilibrium height of water is he = 1
2g

(
k

αa

)2
.

Since f ′(he) < 0, the equilibrium height is stable.

20.

(a) The equilibrium points are y∗ = 0, 1. since f ′(0) = α > 0, the equilibrium solution y∗ = 0
is unstable. Since f ′(1) = −α < 0, the equilibrium solution y∗ = 1 is asymptotically
stable.

(b) The equation is separable. The solution is given by

y(t) =
y0e

αt

1− y0 + y0eαt
.

We see that limt→∞ y(t) = 1.

21.

(a) The solution of the separable equation is y(t) = y0e
−βt.

(b) Using the result from part (a), we see that dx/dt = −αxy0e
−βt. This equation is sepa-

rable with solution x(t) = x0exp[−αy0(1− e−βt)/β].

(c) As t →∞, y → 0 and x → x0 exp(−αy0/β).

22.

(a) Letting ′ = d/dt, we have

z′ =
nx′ − xn′

n2

=
−βnx− µnx + νβx2 + µnx

n2

= −β
x

n
+ νβ

(x

n

)2

= −βz + νβz2 = −βz(1− νz).
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(b) First, we rewrite the equation as

z′ + βz = βνz2.

This is a Bernoulli equation with n = 2. Let w = z1−n = z−1. Then, our equation can
be written as

w′ − βw = −βν.

This is a linear equation with solution w = ν + ceβt. Then, using the fact that z = 1/w,
we see that z = 1/(ν + ceβt). Finally, the initial condition z(0) = 1 implies c = 1 − ν.
Therefore, z(t) = 1/(ν + (1− ν)eβt).

(c) Evaluating z(20) for ν = β = 1/8, we conclude that z(20) = 0.0927.

23.

(a) The critical points occur when a−y2 = 0. If a < 0, there are no critical points. If a = 0,
then y∗ = 0 is the only critical point. If a > 0, then y∗ = ±√a are the two critical
points.

(b) We note that f ′(y) = −2y. Therefore, f ′(
√

a) < 0 which implies that
√

a is asymptot-
ically stable; f ′(−√a) > 0 which implies −√a is unstable; the behavior of f ′ around
y∗ = 0 implies that y∗ = 0 is semistable.

(c) Below, we graph solutions in the case a = 1, a = 0 and a = −1 respectively.
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24.

(a) First, for a < 0, the only critical point is y∗ = 0. Second, for a = 0, the only critical point
is y∗ = 0. Third, for a > 0, the critical points are at y∗ = 0,±√a. Here, f ′(y) = a−3y2.
If a < 0,then f ′(y) < 0 for all y, and, therefore, y∗ = 0 will be asymptotically stable.
If a = 0, then f ′(0) = 0. From the behavior on either side of y∗ = 0, we see that
y∗ = 0 will be asymptotically stable. If a > 0, then f ′(0) = a > 0 which implies that
y∗ = 0 is unstable for a > 0. Further, f ′(±√a) = −2a < 0. Therefore, y∗ = ±√a are
asymptotically stable for a > 0.

(b) Below we sketch solution curves for a = 1, 0,−1, respectively.
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(c)
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25.

(a) For a < 0, the critical points are y∗ = 0, a. Since f ′(y) = a − 2y, f ′(0) = a < 0 and
f ′(a) = −a > 0. Therefore, y∗ = 0 is asymptotically stable and y∗ = a is unstable for
a < 0. For a = 0, the only critical point is y∗ = 0. which is semistable since f(y) = −y2

is concave down. For a > 0, the critical points are y∗ = 0, a. Since f ′(0) = a > 0 and
f ′(a) = −a < 0, the critical point y∗ = 0 is unstable while the critical point y∗ = a is
asymptotically stable for a > 0.

(b) Below we sketch solution curves for a = 1, 0,−1, respectively.
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26.

(a) Since the critical points are x∗ = p, q, we will look at their stability. Since f ′(x) =
−αq−αp + 2αx2, we see that f ′(p) = α(2p2− q− p) and f ′(q) = α(2q2− q− p). Now if
p > q, then−p < −q, and, therefore, f ′(q) = α(2q2−q−p) < α(2q2−2q) = 2αq(q−1) < 0
since 0 < q < 1. Therefore, if p > q, f ′(q) < 0, and, therefore, x∗ = q is asymptotically
stable. Similarly, if p < q, then x∗ = p is asymptotically stable, and therefore, we can
conclude that x(t) → min{p, q} as t →∞.

The equation is separable. It can be solved by using partial fractions as follows. We can
rewrite the equation as

(
1/(q − p)

p− x
+

1/(p− q)

q − x

)
dx = αdt,

which implies

ln

∣∣∣∣
p− x

q − x

∣∣∣∣ = (p− q)αt + C.

The initial condition x0 = 0 implies C = ln |p/q|, and, therefore,

ln

∣∣∣∣
q(p− x)

p(q − x)

∣∣∣∣ = (p− q)αt.

Applying the exponential function and simplifying, we conclude that

x(t) =
pq(e(p−q)αt − 1)

pe(p−q)αt − q
.

(b) In this case, x∗ = p is the only critical point. Since f(x) = α(p− x)2 is concave up, we
conclude that x∗ = p is semistable. Further, if x0 = 0, we can conclude that x → p as
t →∞.

This equation is separable. Its solution is given by

x(t) =
p2αt

pαt + 1
.
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Section 2.6

1. Here M(x, y) = 2x + 3 and N(x, y) = 2y − 2. Since My = Nx = 0, the equation is exact.
Since ψx = M = 2x + 3, to solve for ψ, we integrate M with respect to x. We conclude that
ψ = x2 + 3x + h(y). Then ψy = h′(y) = N = 2y − 2 implies h(y) = y2 − 2y. Therefore,
ψ(x, y) = x2 + 3x + y2 − 2y = c.
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2. Here M(x, y) = 2x + 4y and N(x, y) = 2x − 2y. Since My 6= Nx, the equation is not
exact.

3. Here M(x, y) = 3x2 − 2xy + 2 and N(x, y) = 6y2 − x2 + 3. Since My = −2x = Nx, the
equation is exact. Since ψx = M = 3x2−2xy+2, to solve for ψ, we integrate M with respect
to x. We conclude that ψ = x3−x2y+2x+h(y). Then ψy = −x2 +h′(y) = N = 6y2−x2 +3
implies h′(y) = 6y2+3. Therefore, h(y) = 2y3+3y and ψ(x, y) = x3−x2y+2x+2y3+3y = c.
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4. Here M(x, y) = 2xy2 + 2y and N(x, y) = 2x2y + 2x. Since My = 4xy + 2 = Nx, the
equation is exact. Since ψx = M = 2xy2 +2y, to solve for ψ, we integrate M with respect to
x. We conclude that ψ = x2y2 + 2xy + h(y). Then ψy = 2x2y + 2x + h′(y) = N = 2x2y + 2x
implies h′(y) = 0. Therefore, h(y) = C and ψ(x, y) = x2y2 + 2xy = c.
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5. Here M(x, y) = ax+ by and N(x, y) = bx+ cy. Since My = b = Nx, the equation is exact.
Since ψx = M = ax+ by, to solve for ψ, we integrate M with respect to x. We conclude that
ψ = ax2/2+ bxy +h(y). Then ψy = bx+h′(y) = N = bx+ cy implies h′(y) = cy. Therefore,
h(y) = cy2/2 and ψ(x, y) = ax2/2 + bxy + cy2/2 = c.
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6. Here M = ax − by and N = bx − cy. Since My = −b and Nx = b, the equation is not
exact.

7. Here M(x, y) = ex sin y − 2y sin x and N(x, y) = ex cos y + 2 cos x. Since My = ex cos y −
sin x = Nx, the equation is exact. Since ψx = M = ex sin y − 2y sin x, to solve for ψ, we
integrate M with respect to x. We conclude that ψ = ex sin y + 2y cos x + h(y). Then
ψy = ex cos y+2 cos x+h′(y) = N = ex cos y+2 cos x implies h′(y) = 0. Therefore, h(y) = C
and ψ(x, y) = ex sin y + 2y cos x = c.
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8. Here M = ex sin y + 3y and N = −3x + ex sin y. Therefore, My = ex cos y + 3 and
Nx = −3 + ex sin y. Since My 6= Nx, therefore, the equation is not exact.

9. Here M(x, y) = yexy cos(2x) − 2exy sin(2x) + 2x and N(x, y) = xexy cos(2x) − 3. Since
My = exy cos(2x)+xyexy cos(2x)−2xexy sin(2x) = Nx, the equation is exact. Since ψx = M =
yexy cos(2x)−2exy sin(2x)+2x, to solve for ψ, we integrate M with respect to x. We conclude
that ψ = exy cos(2x) + x2 + h(y). Then ψy = xexy cos(2x) + h′(y) = N = xexy cos(2x) − 3
implies h′(y) = −3. Therefore, h(y) = −3y and ψ(x, y) = exy cos(2x) + x2 − 3y = c.
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10. Here M(x, y) = y/x + 6x and N(x, y) = ln(x)− 2. Since My = 1/x = Nx, the equation
is exact. Since ψx = M = y/x + 6x, to solve for ψ, we integrate M with respect to x. We
conclude that ψ = y ln(x) + 3x2 + h(y). Then ψy = ln(x) + h′(y) = N = ln(x) − 2 implies
h′(y) = −2. Therefore, h(y) = −2y and ψ(x, y) = y ln(x) + 3x2 − 2y = c.
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11. Here M(x, y) = x ln(y) + xy and N(x, y) = y ln(x) + xy. Since My = x/y + x and
Nx = y/x + y, we conclude that the equation is not exact.

12. Here M(x, y) = x/(x2+y2)3/2 and N(x, y) = y/(x2+y2)3/2. Since My = Nx, the equation
is exact. Since ψx = M = x/(x2 + y2)3/2, to solve for ψ, we integrate M with respect to x.
We conclude that ψ = −1/(x2 + y2)1/2 + h(y). Then ψy = y/(x2 + y2)3/2 + h′(y) = N =
y/(x2 + y2)3/2 implies h′(y) = 0. Therefore, h(y) = 0 and ψ(x, y) = −1/(x2 + y2)1/2 = c
which implies that ψ(x, y) = (x2 + y2) = c.
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13. Here M(x, y) = 2x − y and N(x, y) = 2y − x. Therefore, My = Nx = −1 which
implies that the equation is exact. Integrating M with respect to x, we conclude that
ψ = x2 − xy + h(y). Then ψy = −x + h′(y) = N = 2y − x implies h′(y) = 2y. Therefore,
h(y) = y2 and we conclude that ψ = x2−xy+y2 = C. The initial condition y(1) = 3 implies

c = 7. Therefore, x2 − xy + y2 = 7. Solving for y, we conclude that y =
1

2

[
x +

√
28− 3x2

]
.

Therefore, the solution is valid for 3x2 ≤ 28.

14. Here M(x, y) = 9x2 + y − 1 and N(x, y) = −4y + x. Therefore, My = Nx = 1 which
implies that the equation is exact. Integrating M with respect to x, we conclude that
ψ = 3x3 + xy − x + h(y). Then ψy = x + h′(y) = N = −4y + x implies h′(y) = −4y.
Therefore, h(y) = −2y2 and we conclude that ψ = 3x3 + xy − x − 2y2 = C. The initial
condition y(1) = 0 implies c = 2. Therefore, 3x3 + xy − x − 2y2 = 2. Solving for y, we
conclude that y = [x− (24x3 + x2 − 8x− 16)1/2]/4. The solution is valid for x > 0.9846.
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15. Here M(x, y) = xy2 + bx2y and N(x, y) = x3 + x2y. Therefore, My = 2xy + bx2 and
Nx = 3x2 + 2xy. In order for the equation to be exact, we need b = c. Taking this value
for b, we integrating M with respect to x. We conclude that ψ = x2y2/2 + x3y + h(y).
Then ψy = x2y + x3 + h′(y) = N = x3 + x2y implies h′(y) = 0. Therefore, h(y) = C and
ψ(x, y) = x2y2/2 + x3y = C. That is, the solution is given implicitly as x2y2/2 + x3y = c.

16. Here M(x, y) = ye2xy + x and N(x, y) = bxe2xy. Then My = e2xy + 2xye2xy and
Nx = be2xy + 2bxye2xy. The equation will be exact as long as b = 1. Integrating M with
respect to x, we conclude that ψ = e2xy/2+x2/2+h(y). Then ψy = xe2xy+h′(y) = N = xe2xy

implies h′(y) = 0. Therefore, h(y) = 0 and we conclude that the solution is given implicitly
by the equation e2xy + x2 = C.

17. We notice that ψ(x, y) = f(x) + g(y). Therefore, ψx = f ′(x) and ψy = g′(y). That is,

ψx = M(x, y0) ψy = N(x0, y).

Furthermore, ψxy = My and ψyx = Nx. Based on the hypothesis, ψxy = ψyx and My = Nx.

18. We notice that (M(x))y = 0 = (N(y))x. Therefore, the equation is exact.

19. Here M(x, y) = x2y3 and N(x, y) = x + xy2. Therefore, My = 3x2y2 and Nx = 1 + y2.
We see that the equation is not exact. Now, multiplying the equation by µ(x, y) = 1/xy3,
the equation becomes

xdx + (1 + y2)/y3dy = 0.

Now we see that for this equation M = x and N = (1 + y2)/y3. Therefore, My = 0 = Nx.
Integrating M with respect to x, we see that ψ = x2/2 + h(y). Further, ψy = h′(y) = N =
(1+y2)/y3 = 1/y3+1/y. Therefore, h(y) = −1/2y2+ln(y) and we conclude that the solution
of the equation is given implicitly by x2 − 1/y2 + 2 ln(y) = C.
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20. Multiplying the equation by µ(x, y) = yex, the equation becomes

(ex sin y − 2y sin x)dx + (ex cos y + 2 cos x)dy = 0.

Now we see that for this equation M = ex sin y−2y sin x and N = ex cos y+2 cos x. Therefore,
My = ex cos y − 2 sin x = Nx. Integrating M with respect to x, we see that ψ = ex sin y +
2y cos x + h(y). Further, ψy = ex cos y + 2 cos x + h′(y) = N = ex cos y + 2 cos x. Therefore,
h(y) = 0 and we conclude that the solution of the equation is given implicitly by ex sin y +
2y cos x = C.

80



–2

–1

1

2

y

–2 –1 1 2
x

21. Multiplying the equation by µ(x, y) = y, the equation becomes

y2dx + (2xy − y2ey)dy = 0.

Now we see that for this equation M = y2 and N = 2xy − y2ey. Therefore, My = 2y = Nx.
Integrating M with respect to x, we see that ψ = xy2 + h(y). Further, ψy = 2xy + h′(y) =
N = 2xy − y2ey. Therefore, h′(y) = −y2ey which implies that h(y) = −ey(y2 − 2y + 2), and
we conclude that the solution of the equation is given implicitly by xy2−ey(y2−2y+2) = C.
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22. Multiplying the equation by µ(x, y) = xex, the equation becomes

(x2 + 2x)ex sin ydx + x2ex cos ydy = 0.

Now we see that for this equation My = (x2 + 2x)ex cos y = Nx. Integrating M with respect
to x, we see that ψ = x2ex sin y + h(y). Further, ψy = x2ex cos y + h′(y) = N = x2ex cos y.
Therefore, h′(y) = 0 which implies that the solution of the equation is given implicitly by
x2ex sin y = C.
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23. Suppose µ is an integrating factor which will make the equation exact. Then multiplying
the equation by µ, we have

µMdx + µNdy = 0.

Then we need (µM)y = (µN)x. That is, we need µyM + µMy = µxN + µNx. Then we
rewrite the equation as µ(Nx−My) = µyM − µxN . Suppose µ does not depend on x. Then
µx = 0. Therefore, µ(Nx −My) = µyM . Using the assumption that (Nx −My)/M = Q(y),
we can find an integrating factor µ by choosing µ which satisfies µy/µ = Q. We conclude
that µ(y) = exp

∫
Q(y) dy is an integrating factor of the differential equation.

24. Suppose µ is an integrating factor which will make the equation exact. Then multiplying
the equation by µ, we have

µMdx + µNdy = 0.

Then we need (µM)y = (µN)x. That is, we need µyM + µMy = µxN + µNx. Then we
rewrite the equation as µ(Nx − My) = µyM − µxN . By the given assumption, we need
µ to satisfy µR(xM − yN) = µyM − µxN . This equation is satisfied if µy = (µx)R and
µx = (µy)R. Consider µ = µ(xy). Then µx = µ′y and µy = µ′x where ′ = d/dz for z = xy.
Therefore, we need to choose µ to satisfy µ′ = µR. This equation is separable with solution
µ = exp(

∫
R(z) dz).

25. Since (My −Nx)/N = 3 is a function of x only, we know that µ = e3x is an integrating
factor for this equation. Multiplying the equation by µ, we have

e3x(3x2y + 2xy + y3)dx + e3x(x2 + y2)dy = 0.

Then My = e3x(3x2 + 2x + 3y2) = Nx. Therefore, this new equation is exact. Integrating M
with respect to x, we conclude that ψ = (x2y + y3/3)e3x + h(y). Then ψy = (x2 + y2)e3x +
h′(y) = N = e3x(x2 + y2). Therefore, h′(y) = 0 and we conclude that the solution is given
implicitly by (3x2y + y3)e3x = c.
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26. Since (My−Nx)/N = −1 is a function of x only, we know that µ = e−x is an integrating
factor for this equation. Multiplying the equation by µ, we have

(e−x − ex − ye−x)dx + e−xdy = 0.

Then My = −e−x = Nx. Therefore, this new equation is exact. Integrating M with respect
to x, we conclude that ψ = −e−x − ex + ye−x + h(y). Then ψy = e−x + h′(y) = N = e−x.
Therefore, h′(y) = 0 and we conclude that the solution is given implicitly by −e−x − ex +
ye−x = c.
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27. Since (Nx −My)/M = 1/y is a function of y only, we know that µ(y) = e
R

1/y dy = y is
an integrating factor for this equation. Multiplying the equation by µ, we have

ydx + (x− y sin y)dy = 0.

Then for this equation, My = 1 = Nx. Therefore, this new equation is exact. Integrating M
with respect to x, we conclude that ψ = xy + h(y). Then ψy = x + h′(y) = N = x− y sin y.
Therefore, h′(y) = −y sin y which implies that h(y) = −siny + y cos y, and we conclude that
the solution is given implicitly by xy − sin y + y cos y = C.
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28. Since (Nx−My)/M = (2y−1)/y is a function of y only, we know that µ(y) = e
R

2−1/y dy =
e2y/y is an integrating factor for this equation. Multiplying the equation by µ, we have

e2ydx + (2xe2y − 1/y)dy = 0.

Then for this equation, My = Nx. Therefore, this new equation is exact. Integrating M with
respect to x, we conclude that ψ = xe2y +h(y). Then ψy = 2xe2y +h′(y) = N = 2xe2y−1/y.
Therefore, h′(y) = −1/y which implies that h(y) = −ln(y), and we conclude that the solution
is given implicitly by xe2y − ln(y) = C.
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29. Since (Nx −My)/M = cot(y) is a function of y only, we know that µ(y) = e
R

cot(y) dy =
sin(y) is an integrating factor for this equation. Multiplying the equation by µ, we have

ex sin ydx + (ex cos y + 2y)dy = 0.

Then for this equation, My = Nx. Therefore, this new equation is exact. Integrating M
with respect to x, we conclude that ψ = ex sin y + h(y). Then ψy = ex cos y + h′(y) = N =
ex cos y + 2y. Therefore, h′(y) = 2y which implies that h(y) = y2, and we conclude that the
solution is given implicitly by exsiny + y2 = C.
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30. Since (Nx −My)/M = 2/y is a function of y only, we know that µ(y) = e
R

2/y dy = y2 is
an integrating factor for this equation. Multiplying the equation by µ, we have

(4x3 + 3y)dx + (3x + 4y3)dy = 0.

Then for this equation, My = Nx. Therefore, this new equation is exact. Integrating M with
respect to x, we conclude that ψ = x4 + 3xy + h(y). Then ψy = 3x + h′(y) = N = 3x + 4y3.
Therefore, h′(y) = 4y3 which implies that h(y) = y4, and we conclude that the solution is
given implicitly by x4 + 3xy + y4 = C.
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31. Since (Nx −My)/(xM − yN) = 1/xy is a function of xy only, we know that µ(xy) =
e
R

1/xy dy = xy is an integrating factor for this equation. Multiplying the equation by µ, we
have

(3x2y + 6x)dx + (x3 + 3y2)dy = 0.

Then for this equation, My = Nx. Therefore, this new equation is exact. Integrating M with
respect to x, we conclude that ψ = x3y + 3x2 + h(y). Then ψy = x3 + h′(y) = N = x3 + 3y2.
Therefore, h′(y) = 3y2 which implies that h(y) = y3, and we conclude that the solution is
given implicitly by x3y + 3x2 + y3 = C.
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32. Using the integrating factor µ = [xy(2x + y)]−1, this equation can be rewritten as

[
2

x
+

2

2x + y

]
dx +

[
1

y
+

1

2x + y

]
dy = 0.

Integrating M with respect to x, we see that ψ = 2 ln |x| + ln |2x + y| + h(y). Then ψy =
(2x + y)−1 + h′(y) = N = (2x + y)−1 + 1/y. Therefore, h′(y) = 1/y which implies that
h(y) = ln |y|. Therefore, ψ = 2 ln |x| + ln |2x + y| + ln |y| = C. Applying the exponential
function, we conclude that the solution is given implicitly be 2x3y + x2y2 = C.

Section 2.7

1. The Euler formula is yn+1 = yn + h(3 + tn − yn) in which tn = t0 + nh. Since t0 = 0, we
have yn+1 = yn(1− h) + 3h + nh2.

(a) For h = 0.05, the Euler approximations for yn at n = 2, 4, 6, 8 are given by

1.1975, 1.38549, 1.56491, 1.73658

(b) For h = 0.025, the Euler approximations for yn at n = 4, 8, 12, 16 are given by

1.19631, 1.38335, 1.56200, 1.73308

2. The Euler formula is yn+1 = yn + h(5tn − 3
√

yn) in which tn = t0 + nh. Since t0 = 0, we
have yn+1 = yn + 5nh2 − 3h

√
yn with y0 = 2.

(a) For h = 0.05, the Euler approximations for yn at n = 2, 4, 6, 8 are given by

1.59980, 1.29288, 1.07242, 0.930175.

(b) For h = 0.025, the Euler approximations for yn at n = 4, 8, 12, 16 are given by

1.61124, 1.31361, 1.10012, 0.962552

3. The Euler formula is yn+1 = yn + h(2yn − 3tn) in which tn = t0 + nh. Since t0 = 0, we
have yn+1 = yn(1 + 2h)− 3nh2.
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(a) For h = 0.05, the Euler approximations for yn at n = 2, 4, 6, 8 are given by

1.2025, 1.41603, 1.64289, 1.88590

(b) For h = 0.025, the Euler approximations for yn at n = 4, 8, 12, 16 are given by

1.20388, 1.41936, 1.64896, 1.89572

4. The Euler formula is yn+1 = yn + h(2tn + e−tnyn) in which tn = t0 + nh. Since t0 = 0, we
have yn+1 = yn + 2nh2 + he−nhyn.

(a) For h = 0.05, the Euler approximations for yn at n = 2, 4, 6, 8 are given by

1.10244, 1.21426, 1.33484, 1.46399

(b) For h = 0.025, the Euler approximations for yn at n = 4, 8, 12, 16 are given by

1.10365, 1.21656, 1.33817, 1.46832

5. The Euler formula is yn+1 = yn + h(y2
n + 2tnyn)/(3 + t2n) in which tn = t0 + nh. Since

t0 = 0, we have yn+1 = yn + h(y2
n + 2nhyn)/(3 + n2h2).

(a) For h = 0.05, the Euler approximations for yn at n = 2, 4, 6, 8 are given by

0.509239, 0.522187, 0.539023, 0.559936

(b) For h = 0.025, the Euler approximations for yn at n = 4, 8, 12, 16 are given by

0.509701, 0.523155, 0.540550, 0.562089

6. The Euler formula is yn+1 = yn + h(t2n − y2
n) sin(yn) in which tn = t0 + nh. Since t0 = 0,

we have yn+1 = yn + h(n2h2 − y2
n) sin(yn).

(a) For h = 0.05, the Euler approximations for yn at n = 2, 4, 6, 8 are given by

−0.920498, −0.857538, −0.808030, −0.770038

(b) For h = 0.025, the Euler approximations for yn at n = 4, 8, 12, 16 are given by

−0.922575, −0.860923, −0.812300, −0.774965

7. The Euler formula is yn+1 = yn + h(0.5 − tn + 2yn) in which tn = t0 + nh. Since t0 = 0,
we have yn+1 = yn + h(0.5− nh + 2yn).

(a) For h = 0.025, the Euler approximations for yn at n = 20, 40, 60, 80 are given by

2.90330, 7.53999, 19.4292, 50.5614
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(b) For h = 0.0125, the Euler approximations for yn at n = 40, 80, 120, 160 are given by

2.93506, 7.70957, 20.1081, 52.9779

8. The Euler formula is yn+1 = yn + h(5tn − 3
√

yn) in which tn = t0 + nh. Since t0 = 0, we
have yn+1 = yn + h(5nh− 3

√
yn).

(a) For h = 0.025, the Euler approximations for yn at n = 20, 40, 60, 80 are given by

0.891830, 1.25225, 2.37818, 4.07257

(b) For h = 0.0125, the Euler approximations for yn at n = 40, 80, 120, 160 are given by

0.908902, 1.26872, 2.39336, 4.08799

9. The Euler formula is yn+1 = yn + h
√

tn + yn in which tn = t0 + nh. Since t0 = 0, we have
yn+1 = yn + h

√
nh + yn.

(a) For h = 0.025, the Euler approximations for yn at n = 20, 40, 60, 80 are given by

3.95713, 5.09853, 6.41548, 7.90174

(b) For h = 0.0125, the Euler approximations for yn at n = 40, 80, 120, 160 are given by

3.95965, 5.10371, 6.42343, 7.91255

10. The Euler formula is yn+1 = yn + h(2tn + e−tnyn) in which tn = t0 + nh. Since t0 = 0, we
have yn+1 = yn + h(2nh + e−nhyn).

(a) For h = 0.025, the Euler approximations for yn at n = 20, 40, 60, 80 are given by

1.60729, 2.46830, 3.72167, 5.45963

(b) For h = 0.0125, the Euler approximations for yn at n = 40, 80, 120, 160 are given by

1.60996, 2.47460, 3.73356, 5.47774

11. The Euler formula is yn+1 = yn + h(4 − tnyn)/(1 + y2
n) in which tn = t0 + nh. Since

t0 = 0, we have yn+1 = yn + h(4− nhyn)/(1 + y2
n).

(a) For h = 0.025, the Euler approximations for yn at n = 20, 40, 60, 80 are given by

−1.45865, −0.217545, 1.05715, 1.41487

(b) For h = 0.0125, the Euler approximations for yn at n = 40, 80, 120, 160 are given by

−1.45322, −0.180813, 1.05903, 1.41244
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12. The Euler formula is yn+1 = yn + h(y2
n + 2tnyn)/(3 + t2n) in which tn = t0 + nh. Since

t0 = 0, we have yn+1 = yn + h(y2
n + 2nhyn)/(3 + n2h2).

(a) For h = 0.025, the Euler approximations for yn at n = 20, 40, 60, 80 are given by

0.587987, 0.791589, 1.14743, 1.70973

(b) For h = 0.0125, the Euler approximations for yn at n = 40, 80, 120, 160 are given by

0.589440, 0.795758, 1.15693, 1.72955

13. The Euler formula is
yn+1 = yn + h(1− tn + 4yn)

in which tn = t0 + nh. Since t0 = 0, we can write

yn+1 = yn + h− nh2 + 4hyn

with y0 = 1. With h = 0.01, a total of 200 iterations is necessary to reach t = 2. With
h = 0.001, a total of 2000 iterations is necessary.

14. We will use the first three terms in equation (12),

φ(tn+1) = φ(tn) + f [tn, φ(tn)]h + φ′′(tn)
h2

2
.

Letting h = 0.1, then the approximation is given by

yn+1 = yn + h(1− tn + 4yn) +
h2

2
(3− 4tn + 16yn).

Therefore,

y1 = 1 + 0.1(1− 0 + 4(1)) +
0.12

2
(3− 4(0) + 16(1)) = 1 + 0.5 + .095 = 1.595.

Then, repeating this argument for y2, we conclude that y2 = 2.4636.
Solving this linear equation, we conclude that the exact solution is given by

y(t) = − 3

16
+

1

4
t +

19

16
e4t.

Therefore, y(0.1) = 1.609 and y(0.2) = 2.505.

15. We know that en+1 = 1
2
φ′′(tn)h2 where tn < tn < tn+1. Here

φ′(t) = 2φ(t)− 1.

Therefore,
φ′′(t) = 2φ′(t) = 2(2φ(t)− 1) = 4φ(t)− 2.
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Therefore,
en+1 = (2φ(tn)− 1)h2.

Therefore,
|en+1| ≤ |2M + 1|h2

where M = max0≤t≤1 |φ(t)|.
The exact solution of this linear equation is y(t) = 1/2 + 1/2e2t. Then, using the fact

that the local truncation error is given by en+1 = 1
2
φ(tn)h2 and φ(t) = 1/2 + 1/2e2t, we can

conclude that
en+1 = e2tnh2.

Therefore, |e1| ≤ e0.2(0.1)2 ≈ 0.012. Similarly, |e4| ≤ e0.8(0.1)2 ≈ 0.022.

16. We know that en+1 = 1
2
φ′′(tn)h2 where tn < tn < tn+1. Here

φ′(t) =
1

2
− t + 2φ(t).

Therefore,

φ′′(t) = −1 + 2φ′(t) = −1 + 2

(
1

2
− t + 2φ(t)

)
= −2t + 4φ(t).

Therefore,
en+1 = (−tn + 2φ(tn))h2.

Therefore,
|en+1| ≤ |2M + 1|h2

where M = max0≤t≤1 |φ(t)|.
The exact solution of this linear equation is y(t) = 1

2
t+ e2t. Then, using the fact that the

local truncation error is given by en+1 = 1
2
φ(tn)h2 and φ(t) = 1

2
t + e2t, we can conclude that

en+1 = 2e2tnh2.

Therefore, |e1| ≤ 2e0.2(0.1)2 ≈ 0.024. Similarly, |e4| ≤ 2e0.8(0.1)2 ≈ 0.045.

17. We know that en+1 = 1
2
φ′′(tn)h2 where tn < tn < tn+1. Here

φ′(t) = t2 + (φ(t))2.

Therefore,
φ′′(t) = 2t + 2φ(t)φ′(t) = 2t + 2t2φ(t) + 2(φ(t))3

Therefore,
en+1 = (tn + t

2
nφ(tn) + (φ(tn))3)h2.

Therefore,
|en+1| ≤ |tn+1 + t2n+1Mn+1 + M3

n+1|h2

where Mn+1 = maxtn≤t≤tn1
|φ(t)|.
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18. We know that en+1 = 1
2
φ′′(tn)h2 where tn < tn < tn+1. Here

φ′(t) = 5t− 3
√

φ(t).

Therefore,

φ′′(t) = 5− 3

2
(φ(t))−1/2φ′(t) = 5− 3

2

5t− 3
√

φ(t)√
φ(t)

.

Therefore,

en+1 =
1

2

(
5− 3

2

(5tn − 3
√

φ(tn))√
φ(tn)

)
h2

=
1

4

(
19− 15

tn√
φ(tn)

)
h2.

19. We know that en+1 = 1
2
φ′′(tn)h2 where tn < tn < tn+1. Here

φ′(t) =
√

t + φ(t).

Therefore,

φ′′(t) =
1 + φ′(t)

2
√

t + φ(t)
=

1

2
√

t + φ(t)
+

1

2
.

Therefore,

en+1 =
1

4

[
1 +

1√
tn + φ(tn)

]
h2.

20. We know that en+1 = 1
2
φ′′(tn)h2 where tn < tn < tn+1. Here

φ′(t) = 2t + e−tφ(t).

Therefore,

φ′′(t) = 2 + (−φ(t)− tφ′(t))e−tφ(t) = 2 + (−φ(t)− t(2t + e−tφ(t)))e−tφ(t).

Therefore,

en+1 =
1

2

[
2 + (−φ(tn)− 2t

2
n − tne

−tnφ(tn))e−tnφ(tn)
]
h2.

21.

(a) The solution is given by φ(t) = 1
5π

sin(5πt) + 1.
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(b) Approximate values at t = 0.2, 0.4, 0.6 are given by 1.2, 1.0, 1.2, respectively.
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(c) Approximate values at t = 0.2, 0.4, 0.6 are given by 1.1, 1.0, 1.1, respectively.

(d) Since φ′′(t) = −5π sin(5πt), the local truncation error for the Euler method is given by

en+1 = −5πh2

2
sin(5πtn).

In order to guarantee that |en+1| < 0.05, we need

5πh2

2
< 0.05.

Solving this inequality, we conclude that we would need h < 1/
√

50πapprox0.08.

22.

1. The Euler formula is yn+1 = yn + h(1 − tn + 4yn). The approximate values for the
solution at t = 0.1, 0.2, 0.3, 0.4 are given by

1.55, 2.34, 3.46, 5.07.
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2. The Euler formula is yn+1 = yn + h(3 + tn − yn). The approximate values for the
solution at t = 0.1, 0.2, 0.3, 0.4 are given by

1.20, 1.39, 1.57, 1.74.

3. The Euler formula is yn+1 = yn +h(2yn−3tn). The approximate values for the solution
at t = 0.1, 0.2, 0.3, 0.4 are given by

1.20, 1.42, 1.65, 1.90.

23.

(a)

1000 ·
∣∣∣∣
6.0 18
2.0 6.0

∣∣∣∣ = 1000 · 0 = 0.

(b)

1000 ·
∣∣∣∣
6.01 18.0
2.00 6.00

∣∣∣∣ = 1000(0.06) = 60.

(c)

1000 ·
∣∣∣∣
6.010 18.04
2.004 6.000

∣∣∣∣ = 1000(−0.09216) = −92.16.

24. Rounding to three digits, a(b−c) ≈ 0.224. Similarly, rounding to three digits, ab ≈ 0.702
and ac ≈ 0.477. Therefore, ab− ac ≈ 0.225.

25.

(a) The maximum errors occur at t = 2. For h = 0.001, 0.01, 0.025, 0.05, they are given by

56.0393, 510.8722, 1107.4123, 1794.5339.

(b)

4

4.5

5

5.5

6

6.5

7

7.5

–6 –5 –4 –3
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(c) Yes.

(d) Using a curve-fitting routine, the slope of the least squares line is ≈ .909.

Section 2.8

1.

(a) The improved Euler formula is

yn+1 = yn + h

(
3 +

1

2
tn +

1

2
tn+1 − yn

)
− h2

2
(3 + tn − yn).

Since tn = t0 + nh and t0 = 0, this formula can be simplified to

yn+1 = yn + h(3− yn) +
h2

2
(yn − 2 + 2n)− nh3

2

with y0 = 1. With h = 0.05, the approximate values of the solution at t = 0.1, 0.2, 0.3, 0.4
are

1.19512, 1.38120, 1.55909, 1.72956

(b) Using h = 0.025, the approximate values of the solution at t = 0.1, 0.2, 0.3, 0.4 are

1.19515, 1.38125, 1.55916, 1.72965.

(c) Using h = 0.0125, the approximate values of the solution at t = 0.1, 0.2, 0.3, 0.4 are

1.19516, 1.38126, 1.55918, 1.72967.

(d) Using the Runge-Kutta method with h = 0.1, the approximate values of the solution at
t = 0.1, 0.2, 0.3, 0.4 are

1.19516, 1.38127, 1.55918, 1.72968

(e) Using the Runge-Kutta method with h = 0.05, the approximate values of the solution
at t = 0.1, 0.2, 0.3, 0.4 are

1.19516, 1.38127, 1.55918, 1.72968

2.

(a) The improved Euler formula is

yn+1 = yn +
h

2
(5tn − 3

√
yn)) +

h

2
(5tn+1 − 3

√
Kn)

where Kn = yn + h(5tn − 3
√

yn). Since tn = t0 + nh and t0 = 0, this formula can be
simplified to

yn+1 = yn +
h

2
(5nh− 3

√
yn) +

h

2

[
5(n + 1)h− 3

√
Kn

]

with y0 = 2. With h = 0.05, the approximate values of the solution at t = 0.1, 0.2, 0.3, 0.4
are

1.62283, 1.33460, 1.12820, 0.995445
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(b) Using h = 0.025, the approximate values of the solution at t = 0.1, 0.2, 0.3, 0.4 are

1.62243, 1.33386, 1.12718, 0.994215

(c) Using h = 0.0125, the approximate values of the solution at t = 0.1, 0.2, 0.3, 0.4 are

1.62234, 1.33368, 1.12693, 0.993921

(d) Using the Runge-Kutta method with h = 0.1, the approximate values of the solution at
t = 0.1, 0.2, 0.3, 0.4 are

1.62231, 1.33362, 1.12686, 0.993839

(e) Using the Runge-Kutta method with h = 0.05, the approximate values of the solution
at t = 0.1, 0.2, 0.3, 0.4 are

1.62230, 1.33362, 1.12685, 0.993826

3.

(a) The improved Euler formula is

yn+1 = yn +
h

2
(4yn − 3tn − 3tn+1) + h2(2yn − 3tn).

Since tn = t0 + nh and t0 = 0, this formula can be simplified to

yn+1 = yn + 2hyn +
h2

2
(4yn − 3− 6n)− 3nh3

with y0 = 1. With h = 0.05, the approximate values of the solution at t = 0.1, 0.2, 0.3, 0.4
are

1.20526, 1.42273, 1.65511, 1.90570

(b) Using h = 0.025, the approximate values of the solution at t = 0.1, 0.2, 0.3, 0.4 are

1.20533, 1.42290, 1.65542, 1.90621

(c) Using h = 0.0125, the approximate values of the solution at t = 0.1, 0.2, 0.3, 0.4 are

1.20534, 1.42294, 1.65550, 1.90634

(d) Using the Runge-Kutta method with h = 0.1, the approximate values of the solution at
t = 0.1, 0.2, 0.3, 0.4 are

1.20535, 1.42295, 1.65553, 1.90638
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(e) Using the Runge-Kutta method with h = 0.05, the approximate values of the solution
at t = 0.1, 0.2, 0.3, 0.4 are

1.20535, 1.42296, 1.65553, 1.90638

4.

(a) The improved Euler formula is

yn+1 = yn +
h

2

(
2tn + e−tnyn + 2(tn + h) + e−(tn+h)Kn

)

where Kn = yn + h(2tn + e−tnyn). Since tn = t0 + nh and t0 = 0, this formula can be
simplified to

yn+1 = yn +
h

2

(
2nh + e−nhyn + 2h(n + 1) + e−h(n+1)Kn

)

with y0 = 1. With h = 0.05, the approximate values of the solution at t = 0.1, 0.2, 0.3, 0.4
are

1.10483, 1.21882, 1.34146, 1.47263

(b) Using h = 0.025, the approximate values of the solution at t = 0.1, 0.2, 0.3, 0.4 are

1.10484, 1.21884, 1.34147, 1.47262

(c) Using h = 0.0125, the approximate values of the solution at t = 0.1, 0.2, 0.3, 0.4 are

1.10484, 1.21884, 1.34147, 1.47262

(d) Using the Runge-Kutta method with h = 0.1, the approximate values of the solution at
t = 0.1, 0.2, 0.3, 0.4 are

1.10484, 1.21884, 1.34147, 1.47262

(e) Using the Runge-Kutta method with h = 0.05, the approximate values of the solution
at t = 0.1, 0.2, 0.3, 0.4 are

1.10484, 1.21884, 1.34147, 1.47262

5.

(a) The improved Euler formula is

yn+1 = yn +
h

2

(
y2

n + 2tnyn

3 + t2n

)
+

h

2

(
K2

n + 2tn+1Kn

3 + t2n+1

)
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where Kn = yn + h(y2
n + 2tnyn)/(3 + t2n). Since tn = t0 + nh and t0 = 0, this formula can

be simplified to

yn+1 = yn +
h

2

(
y2

n + 2nhyn

3 + n2h2

)
+ frach2

(
K2

n + 2(n + 1)hKn

3 + (n + 1)2h2

)

with y0 = 0.5. With h = 0.05, the approximate values of the solution at t = 0.1, 0.2, 0.3, 0.4
are

0.510164, 0.524126, 0.542083, 0.564251

(b) Using h = 0.025, the approximate values of the solution at t = 0.1, 0.2, 0.3, 0.4 are

0.510168, 0.524135, 0.542100, 0.564277

(c) Using h = 0.0125, the approximate values of the solution at t = 0.1, 0.2, 0.3, 0.4 are

0.510169, 0.524137, 0.542104, 0.564284

(d) Using the Runge-Kutta method with h = 0.1, the approximate values of the solution at
t = 0.1, 0.2, 0.3, 0.4 are

0.510170, 0.524138, 0.542105, 0.564286

(e) Using the Runge-Kutta method with h = 0.05, the approximate values of the solution
at t = 0.1, 0.2, 0.3, 0.4 are

0.520169, 0.524138, 0.542105, 0.564286

6.

(a) The improved Euler formula is

yn+1 = yn +
h

2
(t2n − y2

n) sin yn +
h

2
(t2n+1 −K2

n) sin Kn

where Kn = yn + h(t2n − y2
n) sin yn. Since tn = t0 + nh and t0 = 0, this formula can be

simplified to

yn+1 = yn +
h

2
(n2h2 − y2

n) sin yn +
h

2

[
(n + 1)2h2 −K2

n

]
sin Kn

with y0 = −1. With h = 0.05, the approximate values of the solution at t = 0.1, 0.2, 0.3, 0.4
are

−0.924650, −0.864338, −0.816642, −0.780008

(b) Using h = 0.025, the approximate values of the solution at t = 0.1, 0.2, 0.3, 0.4 are

−0.924550, −0.864177, −0.816442, −0.779781
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(c) Using h = 0.0125, the approximate values of the solution at t = 0.1, 0.2, 0.3, 0.4 are

−0.924525, −0.864138, −0.816393, −0.779725

(d) Using the Runge-Kutta method with h = 0.1, the approximate values of the solution at
t = 0.1, 0.2, 0.3, 0.4 are

−0.924517, −0.864125, −0.816377, −0.779706

(e) Using the Runge-Kutta method with h = 0.05, the approximate values of the solution
at t = 0.1, 0.2, 0.3, 0.4 are

−0.924517, −0.864125, −0.816377, −0.779706

7.

(a) The improved Euler formula is

yn+1 = yn +
h

2
(0.5− tn + 2yn) +

h

2
(0.5− tn+1 + 2(yn + h(0.5− tn + 2yn))).

Since tn = t0 + nh and t0 = 0, this formula can be simplified to

yn+1 = yn + h(2yn + 0.5) + h2(2yn − n)− nh3

with y0 = 1. With h = 0.025, the approximate values of the solution at t = 0.5, 1.0, 1.5, 2.0
are

2.96719, 7.88313, 20.8114, 55.5106

(b) Using h = 0.0125, the approximate values of the solution at t = 0.5, 1.0, 1.5, 2.0 are

2.96800, 7.88755, 20.8294, 55.5758

(c) Using the Runge-Kutta method with h = 0.1, the approximate values of the solution at
t = 0.5, 1.0, 1.5, 2.0 are

2.96825, 7.88889, 20.8349, 55.5957

(d) Using the Runge-Kutta method with h = 0.05, the approximate values of the solution
at t = 0.5, 1.0, 1.5, 2.0 are

2.96828, 7.88904, 20.8355, 55.5980

8.
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(a) The improved Euler formula is

yn+1 = yn +
h

2
(5tn − 3

√
yn) +

h

2
(5tn+1 − 3

√
Kn)

where Kn = yn + h(5tn − 3
√

yn). Since tn = t0 + nh and t0 = 0, this formula can be
simplified to

yn+1 = yn +
h

2
(5nh− 3

√
yn) +

h

2

[
5(n + 1)h− 3

√
Kn

]

with y0 = 2. With h = 0.025, the approximate values of the solution at t = 0.5, 1.0, 1.5, 2.0
are

0.926139, 1.28558, 2.40898, 4.10386

(b) Using h = 0.0125, the approximate values of the solution at t = 0.5, 1.0, 1.5, 2.0 are

0.925815, 1.28525, 2.40869, 4.10359

(c) Using the Runge-Kutta method with h = 0.1, the approximate values of the solution at
t = 0.5, 1.0, 1.5, 2.0 are

0.925725, 1.28516, 2.40860, 4.10350

(d) Using the Runge-Kutta method with h = 0.05, the approximate values of the solution
at t = 0.5, 1.0, 1.5, 2.0 are

0.925711, 1.28515, 2.40860, 4.10350

9.

(a) The improved Euler formula is

yn+1 = yn +
h

2

√
tn + yn +

h

2

√
tn+1 + Kn

where Kn = yn+h
√

tn + yn. Since tn = t0+nh and t0 = 0, this formula can be simplified
to

yn+1 = yn +
h

2

√
nh + yn +

h

2

√
(n + 1)h + Kn

with y0 = 3. With h = 0.025, the approximate values of the solution at t = 0.5, 1.0, 1.5, 2.0
are

3.96217, 5.10887, 6.43134, 7.92332

(b) Using h = 0.0125, the approximate values of the solution at t = 0.5, 1.0, 1.5, 2.0 are

3.96218, 5.10889, 6.43138, 7.92337
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(c) Using the Runge-Kutta method with h = 0.1, the approximate values of the solution at
t = 0.5, 1.0, 1.5, 2.0 are

3.96219, 5.10890, 6.43139, 7.92338

(d) Using the Runge-Kutta method with h = 0.05, the approximate values of the solution
at t = 0.5, 1.0, 1.5, 2.0 are

3.96219, 5.10890, 6.43139, 7.92338

10.

(a) The improved Euler formula is

yn+1 = yn +
h

2

(
2tn + e−tnyn + 2(tn + h) + e−(tn+h)Kn

)

where Kn = yn + h(2tn + e−tnyn). Since tn = t0 + nh and t0 = 0, this formula can be
simplified to

yn+1 = yn +
h

2

(
2nh + e−nhyn + 2h(n + 1) + e−h(n+1)Kn

)

with y0 = 1. With h = 0.025, the approximate values of the solution at t = 0.5, 1.0, 1.5, 2.0
are

1.61263, 2.48097, 3.74556, 5.49595

(b) Using h = 0.0125, the approximate values of the solution at t = 0.5, 1.0, 1.5, 2.0 are

1.61263, 2.48092, 3.74550, 5.49589

(c) Using the Runge-Kutta method with h = 0.1, the approximate values of the solution at
t = 0.5, 1.0, 1.5, 2.0 are

1.61262, 2.48091, 3.74548, 5.49587

(d) Using the Runge-Kutta method with h = 0.05, the approximate values of the solution
at t = 0.5, 1.0, 1.5, 2.0 are

1.61262, 2.48091, 3.74548, 5.49587

11.

(a) The improved Euler formula is

yn+1 = yn +
h

2

(
4− tnyn

1 + y2
n

)
+

h

2

(
4− tn+1Kn

1 + K2
n

)
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where Kn = yn + h(4− tnyn)/(1 + y2
n). Since tn = t0 + nh and t0 = 0, this formula can

be simplified to

yn+1 = yn +
h

2

(
4− nhyn

1 + y2
n

)
+

h

2

(
4− h(n + 1)Kn

1 + K2
n

)

with y0 = −2. With h = 0.025, the approximate values of the solution at t =
0.5, 1.0, 1.5, 2.0 are

−1.44768, −0.144478, 1.06004, 1.40960

(b) Using h = 0.0125, the approximate values of the solution at t = 0.5, 1.0, 1.5, 2.0 are

−1.44765, −0.143690, 1.06072, 1.40999

(c) Using the Runge-Kutta method with h = 0.1, the approximate values of the solution at
t = 0.5, 1.0, 1.5, 2.0 are

−1.44764, −0.143543, 1.06089, 1.41008

(d) Using the Runge-Kutta method with h = 0.05, the approximate values of the solution
at t = 0.5, 1.0, 1.5, 2.0 are

−1.44764, −0.143427, 1.06095, 1.41011

12.

(a) The improved Euler formula is

yn+1 = yn +
h

2

(
y2

n + 2tnyn

3 + t2n

)
+

h

2

(
K2

n + 2tn+1Kn

3 + t2n+1

)

where Kn = yn + h(y2
n + 2tnyn)/(3 + t2n). Since tn = t0 + nh and t0 = 0, this formula can

be simplified to

yn+1 = yn +
h

2

(
y2

n + 2nhyn

3 + n2h2

)
+

h

2

(
K2

n + 2(n + 1)hKn

3 + (n + 1)2h2

)

with y0 = 0.5. With h = 0.025, the approximate values of the solution at t =
0.5, 1.0, 1.5, 2.0 are

0.590897, 0.799950, 1.16653, 1.74969

(b) Using h = 0.0125, the approximate values of the solution at t = 0.5, 1.0, 1.5, 2.0 are

0.590906, 0.799988, 1.16663, 1.74992
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(c) Using the Runge-Kutta method with h = 0.1, the approximate values of the solution at
t = 0.5, 1.0, 1.5, 2.0 are

0.590909, 0.800000, 1.166667, 1.75000

(d) Using the Runge-Kutta method with h = 0.05, the approximate values of the solution
at t = 0.5, 1.0, 1.5, 2.0 are

0.590909, 0.800000, 1.166667, 1.75000

13. The improved Euler method is

yn+1 = yn +
h

2
(1− tn + 4yn) +

h

2
[1− (tn + h) + 4Kn]

where Kn = yn + h(1 − tn + 4yn). Since tn = nh + t0 and t0 = 0, this equation can be
simplified to

yn+1 = yn +
h

2
(1− nh + 4yn) +

h

2
[1− h(n + 1) + 4Kn]

with y0 = 1.

14. The differential equation is linear. Its exact solution is given by y(t) = 19
16

e4t + 1
4
t− 3

16
.

The improved Euler method is

yn+1 = yn +
h

2
(1− tn + 4yn) +

h

2
[1− (tn + h) + 4Kn]

where Kn = yn + h(1− tn + 4yn).

15.

(a)

–3

–2

–1

0

1

2

3

y(t)

–3 –2 –1 1 2 3
t

(b) The following are the approximate values of the solution at t = 0.8, 0.9, 0.95 using the
Runge-Kutta method with h = 0.01:

5.848616, 14.304785, 50.436365.
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16.

(a)

–3

–2

–1

0

1

2

3

y(t)

–3 –2 –1 1 2 3
t

(b) For the integral curve staring at (0, 0), the slope becomes infinite near tM ≈ 1.5. We
note that the exact solution is given implicitly as y3 − 4y = t3.

(c) Based on the direction field, the solution of the initial value problem with initial condi-
tion y(0) = 0 should decrease monotonically to the limiting value y = −2/

√
3. Using

the Runge-Kutta method, we calculate the approximate value of tM by looking at the
approximate time in the iteration process that the calculated values begin to increase.
For h = 0.1, 0.05, 0.025, 0.01, the respective times are given by tM ≈ 1.9, 1.65, 1.55, 1.455.

(d) These values are not associated with the integral curve starting at (0, 0). These values
are approximations to nearby integral curves.

(e) Suppose now that y(0) = 1. The exact solution is given by y3 − 4y = t3 − 3. For
the integral curve starting at (0, 1), the slope becomes infinite near tM ≈ 2.0. Using
the Runge-Kutta method, we calculate the following approximate values for tM . For
h = 0.1, 0.05, 0.025, 0.01, the respective times are given by tM ≈ 1.85, 1.85, 1.86, 1.835.

17.

(a) First we notice that

φ′(tn)h− f(tn, yn)h

2
= φ′(tn)h− y′nh

2

= φ′(tn)h− φ′(tn)h

2
=

φ′(tn)h

2
.

Using this fact, it follows that φ(tn+1)− yn+1 satisfies the given equation.

(b) First, using the Taylor approximation, we see that

f [tn + h, yn + hf(tn, yn)]− f(tn, yn) = ft(tn, yn)h + fy(tn, yn)hf(tn, yn)

+
1

2!
(h2ftt + 2hkfty + k2fyy)

∣∣∣∣
x=ξ,y=η
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Next, we see that

φ′′(tn)h = ft(tn, φ(tn))h + fy(tn, φ(tn))φ′(tn)h

= ft(tn, yn)h + fy(tn, yn)hf(tn, yn).

Therefore, we conclude that

1

2!
[φ′′(tn)h− {f [tn + h, yn + hf(tn, yn)]− f(tn, yn)}] h

= h

(
1

2!
(h2ftt + 2hkfty + k2fyy)

∣∣∣∣
x=ξ,y=η

)

is proportional to h3.

(c) If f is linear in t and y, then ftt = fty = fyy = 0. Therefore, the terms from part (b)
above are all zero.

18. The exact solution is given by φ(t) = −3/16 + t/4 + (19/16)e4t. Then, by the results of
Problem 17(c), the error will be given by

en+1 =
φ′′′(tn)h3

3!
.

Here φ′ = 1/4 + (19/4)e4t, φ′′ = 19e4t, φ′′′ = 76e4t. Therefore,

en+1 =
38e4tnh3

3
.

Therefore, on the interval 0 ≤ t ≤ 2, we conclude that

|en+1| ≤ 38e8h3

3
= 37, 758.8h3.

Then for h = 0.05, we conclude that

|e1| ≤ 38e4(0.05)(0.05)3

3
= 0.00193389.

19. The exact solution of the initial value problem is φ(t) = 1
2

+ 1
2
e2t. Based on the result

from problem 17(c), the local truncation error for a linear differential equation is

en+1 =
1

6
φ′′′(tn)h3.

Here φ′ = e2t, φ′′ = 2e2t, φ′′′ = 4e2t. Therefore,

en+1 =
2

3
e2tnh3.
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Further, on the interval 0 ≤ t ≤ 1,

|en+1| ≤ 2

3
e2h3 = 4.92604h3.

Letting h = 0.1,

|e1| ≤ 2

3
e2(0.1)(0.1)3 = 0.000814269.

Using the improved Euler method, with h = 0.1, we have y1 ≈ 1.11000. The exact value of
the solution is φ(0.1) = 1.1107014.

20. The exact solution of the initial value problem is φ(t) = 1
2
t + e2t. Based on the result

from problem 17(c), the local truncation error for a linear differential equation is

en+1 =
1

6
φ′′′(tn)h3.

Here φ′ = 1
2

+ 2e2t, φ′′ = 4e2t, φ′′′ = 8e2t. Therefore,

en+1 =
4

3
e2tnh3.

Further, on the interval 0 ≤ t ≤ 1,

|en+1| ≤ 4

3
e2h3 = 9.85207h3.

Letting h = 0.1,

|e1| ≤ 4

3
e2(0.1)(0.1)3 = 0.00162854.

21. The Euler formula is
yn+1 = yn + h(0.5− tn + 2yn).

Since t0 = 0, y0 = 1 and h = 0.1, we have

y1 = 1 + 0.1(0.5− 0 + 2) = 1.25.

For t0 = 0, the improved Euler formula is

yn+1 = yn + h(2yn + 0.5) + h2(2yn − n)− nh3.

Therefore, for y0 = 1 and h = 0.1,

y1 = 1 + 0.1(2 + 0.5) + (0.1)2(2− 0)− 0(0.1)3 = 1.27.

Therefore, the estimated error of the Euler method is eext
n+1 = 1.27− 1.25 = .02. If we want

the error of the Euler method to be less than 0.0025, we need to multiply the original step
size of 0.1 by the factor

√
0.0025/0.02 ≈ 0.35. Therefore, the required step size is estimated

to be h ≈ (0.1)(0.35) = 0.035.
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22. For t0 = 0, the Euler formula is

yn+1 = yn + h(5nh− 3
√

yn).

Therefore, for y0 = 2 and h = 0.1, we have

y1 = 2 + 0.1(0− 3
√

2) = 1.575736.

For t0 = 0, the improved Euler formula is

yn+1 = yn +
h

2
(5nh− 3

√
yn) +

h

2

[
5(n + 1)h− 3

√
Kn

]

where Kn = yn + h(5tn − 3
√

yn). Therefore, for y0 = 2 and h = 0.1,

y1 = 2 + 0.05(0− 3
√

2) + 0.05[5(0.1)− 3

√
2 + 0.1(0− 3

√
2)] = 1.624575.

Therefore, the estimated error of the Euler method is eext
n+1 = 1.624575−1.575736 = 0.048839.

If we want the error of the Euler method to be less than 0.0025, we need to multiply the
original step size of 0.1 by the factor

√
0.0025/0.048839 ≈ 0.226. Therefore, the required

step size is estimated to be h ≈ (0.1)(0.226) = 0.0226.

23. For t0 = 0, the Euler formula is

yn+1 = yn + h
√

nh + yn.

Therefore, for y0 = 3 and h = 0.1, we have

y1 = 3 + 0.1
√

0 + 3 = 3.173205.

For t0 = 0, the improved Euler formula is

yn+1 = yn +
h

2

√
nh + yn +

h

2

√
(n + 1)h + Kn

where Kn = yn + h
√

tn + yn. Therefore, for y0 = 3 and h = 0.1,

y1 = 3 + 0.05
√

0 + 3 + 0.05

√
0.1 + (3 + 0.1

√
0 + 3) = 3.177063.

Therefore, the estimated error of the Euler method is eext
n+1 = 3.177063−3.173205 = 0.003858.

If we want the error of the Euler method to be less than 0.0025, we need to multiply the
original step size of 0.1 by the factor

√
0.0025/0.003858 ≈ 0.805. Therefore, the required

step size is estimated to be h ≈ (0.1)(0.226) = 0.0805.

24. For t0 = 0, the Euler formula is

yn+1 = yn + h(y2
n + 2nhyn)/(3 + n2h2).

Therefore, for y0 = 0.5 and h = 0.1, we have

y1 = 0.5 + 0.1(0.52 + 0)/(3 + 0) = 0.508334.
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For t0 = 0, the improved Euler formula is

yn+1 = yn +
h

2

(
y2

n + 2nhyn

3 + n2h2

)
+

h

2

(
K2

n + 2(n + 1)hKn

3 + (n + 1)2h2

)

where Kn = yn + h(y2
n + 2tnyn)/(3 + t2n). Therefore, for y0 = 0.5 and h = 0.1,

y1 = 0.5 + 0.05
0.52 + 0

3 + 0
+ 0.05

(0.5 + 0.1(0.52/3))2 + 2(0.1)(0.5 + 0.1(0.52/3))

3 + 0.12
= 0.510148.

Therefore, the estimated error of the Euler method is eext
n+1 = 0.510148− 0.598334 = 0.0018.

The local truncation error is less than the given tolerance. Therefore, if we allow an error tol-
erance of 0.0025, we can multiply the original step size of 0.1 by the factor

√
0.0025/0.0018 ≈

1.1785. Therefore, the required step size is estimated to be h ≈ (0.1)(1.1785) = 0.11785.
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