SOLUTIONS MANUAL

2 FUNCTIONS AND GRAPHS

EXERCISE 2-1

- 10. The table specifies a function, since for each domain value there corresponds one and only one range value.
- 12. The table does not specify a function, since more than one range value corresponds to a given domain value. (Range values 1, 2 correspond to domain value 9.)
- 14. This is a function.
- 16. The graph specifies a function; each vertical line in the plane intersects the graph in at most one point.
- 18. The graph does not specify a function. There are vertical lines which intersect the graph in more than one point. For example, the y-axis intersects the graph in two points.
- 20. The graph does not specify a function.
- **22.** $y = \pi$ is a constant function.

28. $y = \frac{1}{2x + 3}$. It is neither constant nor linear.

30. $y = x^2 - 9$. It is neither constant nor linear.

42. $f(x) = \frac{3x^2}{x^2 + 2}$. Since the denominator is bigger than 1, we note that the values of f are between 0 and 3. Furthermore, the function f has the property that f(-x) = f(x). So, adding points x = 3, x = 4, x = 5, we have:

X	-5	-4	-3	-2	-1	0	1	2	3	4	5
f(x)	2.78	2.67	2.45	2	1	0	1	2	2.45	2.67	2.78

76. $F(x) = -8x^3 + 3\sqrt{3}$ **74.** f(x) = -3x + 4**78.** Function q multiplies the domain element by -2 and adds 7 to the result. 80. Function G multiplies the square root of the domain element by 4 and subtracts the square of the domain element from the result. 82. Given 3y - 7x = 15. Solving for y, we have: 3y = 7x + 15 $y = \frac{7}{2}x + 5$ Since each input value x determines a unique output value y, the equation specifies a function. The domain is R, the set of real numbers. **84.** Given $x - y^2 = 1$. Solving for y, we have: $y^2 = x - 1$ $y = \pm \sqrt{x - 1}$ This equation does not specify a function, since each value of x, x > 1, determines two values of y. For example, corresponding to x = 5, we have y = 2 and y = -2; corresponding to x = 10, we have y = 3 and y = -3. **86.** Given $x^2 + y = 10$. Solving for y, we have: $v = 10 - x^2$ This equation specifies a function. The domain is R. **88.** Given xy + y - x = 5. Solving for y, we have: (x + 1)y = x + 5 or $y = \frac{x + 5}{x + 1}$ This equation specifies a function. The domain is all real numbers except x = -1. **90.** Given $x^2 - y^2 = 16$. Solving for y, we have: $y^2 = x^2 - 16$ or $y = \pm \sqrt{x^2 - 16}$ Thus, the equation does not specify a function since, for x = 5, we have $y = \pm 3$, when x = 6, $y = \pm 2\sqrt{5}$, and so on. **92.** Given G(r) = 3 - 5r. Then: $\frac{G(2 + h) - G(2)}{h} = \frac{3 - 5(2 + h) - (3 - 5 \cdot 2)}{h}$ $= \frac{-7 - 5h + 7}{h} = \frac{-5h}{h} = -5$

94. Given
$$P(x) = 2x^2 - 3x - 7$$
. Then:

$$\frac{P(3 + h) - P(3)}{h} = \frac{2(3 + h)^2 - 3(3 + h) - 7 - (2 \cdot 3^2 - 3 \cdot 3 - 7)}{h}$$

$$= \frac{2(9 + 6h + h^2) - 9 - 3h - 7 - (2)}{h}$$

$$= \frac{2h^2 + 9h}{h} = 2h + 9$$
96. $f(x) = x^2 - 1$
 $f(-3) = (-3)^2 - 1 = 9 - 1 = 8$
98. $f(x) = x^2 - 1$
 $f(3 - 6) = f(-3) = (-3)^2 - 1 = 9 - 1 = 8$
100. $f(x) = x^2 - 1$
 $f(3) - f(6) = [(3)^2 - 1] - [(6)^2 - 1] = 9 - 1 - 36 + 1 = -27$
102. $f(x) = x^2 - 1$
 $f(f(-2)) = f((-2)^2 - 1) = f(4 - 1) = f(3) = (3)^2 - 1 = 9 - 1 = 8$
104. $f(x) = x^2 - 1$
 $f(-3x) = (-3x)^2 - 1 = 9x^2 - 1$
106. $f(x) = x^2 - 1$
 $f(-3x) = (-3x)^2 - 1 = 1 - 2x + x^2 - 1 = -2x + x^2 = x(x - 2)$
108. (A) $f(x) = -3x + 9$ (B) $f(x + h) = -3x - 3h + 9$
(C) $f(x + h) - f(x) = -3h$ (D) $\frac{f(x + h) - f(x)}{h} = -3$
110. (A) $f(x) = 3x^2 + 5x - 8$ (B) $f(x + h) = 3x^2 + 6xh + 3h^2 + 5x + 5h - 8$
(D) $\frac{f(x + h) - f(x)}{h} = 6x + 3h^2 + 5h$
(D) $\frac{f(x + h) - f(x)}{h} = 2xh + h^2 + 40x$
(B) $f(x + h) = x^2 + 2xh + h^2 + 40x$
(C) $f(x + h) - f(x) = -3xh + h^2 + 40x$
(D) $\frac{f(x + h) - f(x)}{h} = 2x + h + 40$
114. Given $A = 0w = 81$.
Thus, $w = \frac{81}{1}$. Now $P = 20 + 2w = 20 + 2\left(\frac{81}{1}\right) = 20 + \frac{162}{1}$.
The domain is $0 > 0$.

Now $A = \Phi w = (80 - w)w$ and $A = 80w - w^2$.

The domain is $0 \le w \le 80$. [Note: $w \le 80$ since w > 80 implies $\bullet < 0$.]

124. (A) 1.2 inches

(B) Evaluate the volume function for x = 1.21, 1.22, ..., and choose the value of x whose volume is

22. The graph of h(x) = -|x - 5|is the graph of y = |x|reflected in the x axis and shifted 5 units to the right.

26. The graph of $g(x) = -6 + \sqrt[3]{x}$ is the graph of $y = \sqrt[3]{x}$ shifted 6 units down.

24. The graph of $m(x) = (x + 3)^2 + 4$ is the graph of $y = x^2$ shifted 3 units to the left and 4 units up.

28. The graph of $m(x) = -0.4x^2$ is the same as the graph of $y = x^2$ reflected in the x axis and vertically contracted by a factor of 0.4.

- **30.** The graph of the basic function y = |x| is shifted 3 units to the right and 2 units up. y = |x 3| + 2
- 32. The graph of the basic function y = |x| is reflected in the x axis, shifted 2 units to the left and 3 units up. Equation: y = 3 - |x + 2|

- **34.** The graph of the basic function $\sqrt[3]{x}$ is reflected in the x axis and shifted up 2 units. Equation: $y = 2 \sqrt[3]{x}$
- **36.** The graph of the basic function $y = x^3$ is reflected in the x axis, shifted to the right 3 units and up 1 unit. Equation: $y = 1 (x 3)^3$

- 50. The graph of the basic function y = x is reflected in the x axis and vertically expanded by a factor of 2. Equation: y = -2x
- 52. The graph of the basic function y = |x| is vertically expanded by a factor of 4. Equation: y = 4|x|
- 54. The graph of the basic function $y = x^3$ is vertically contracted by a factor of 0.25. Equation: $y = 0.25x^3$.
- **56.** Vertical shift, reflection in *y* axis. Reversing the order does not change the result. Consider a point

(a, b) in the plane. A vertical shift of k units followed by a reflection in y axis moves (a, b) to (a, b + k) and then to (-a, b + k). In the reverse order, a reflection in y axis followed by a vertical shift of k units moves (a, b) to (-a, b) and then to (-a, b + k). The results are the same.

- **58.** Vertical shift, vertical expansion. Reversing the order can change the result. For example, let (a, b) be a point in the plane. A vertical shift of k units followed by a vertical expansion of h (h > 1) moves (a, b) to (a, b + k) and then to (a, bh + kh). In the reverse order, a vertical expansion of h followed by a vertical shift of k units moves (a, b) to (a, bh) and then to (a, bh + k); $(a, bh + kh) \neq (a, bh + k)$.
- 60. Horizontal shift, vertical contraction. Reversing the order does not change the result. Consider a point (a, b) in the plane. A horizontal shift of k units followed by a vertical contraction of h (0 < h < 1) moves (a, b) to (a + k, b) and then to (a + k, bh). In the reverse order, a vertical contraction of h followed by a horizontal shift of k units moves (a, b) to (a, bh) and then to (a + k, bh). The results are the same.
- 62. (A) The graph of the basic 64 function $y = \sqrt{x}$ is vertically expanded by a factor of 4.
- 64. (A) The graph of the basic function $y = x^2$ is reflected in the x axis, vertically contracted by a factor of 0.013, and shifted 10 units to the right and 190 units up.

EXERCISE 2-3

2.
$$x^2 - 2x - 5 = x^2 - 2x + 1 - 6$$

 $= (x - 1)^2 - 6$
 $= -(x^2 - 8x + 16 - 7)$
 $= -(x - 4)^2 + 7$
6. The graph of $g(x)$ is the graph of $y = x^2$ shifted right 1 unit and down
6 units.
8. The graph of $n(x)$ is the graph of $y = x^2$ reflected in the x axis, then
shifted right 4 units and up 7 units.
10. (A) g (B) m (C) n (D) f
12. (A) x intercepts: -5, -1; y intercept: -5 (B) Vertex: (-3, 4)
(C) Maximum: 4 (D) Range: $y \le 4$ or $(-\infty, 4]$
(E) Increasing interval: $x \le -3$ or $(-3, -3)$
(F) Decreasing interval: $x \ge 3$ or $(-3, -3)$
(C) Minimum: -4 (D) Range: $y \ge 4$ or $[-4, \infty)$
(B) Increasing interval: $x \ge 3$ or $(-\infty, 3]$
16. $g(x) = -(x + 2)^2 + 3$
(A) x intercepts: $-(x + 2)^2 + 3 = 0$
 $(x + 2)^2 = 3$
 $x + 2 = \pm\sqrt{3}$
 $x = -2 - \sqrt{3}, -2 + \sqrt{3}$
y intercept: -1
(B) Vertex: $(-2, 3)$ (C) Maximum: 3 (D) Range: $y \le 3$ or $(-\infty, 3]$
18. $n(x) = (x - 4)^2 - 3$
(A) x intercepts: $(x - 4)^2 - 3 = 0$
 $(x - 4)^2 = 3$
 $x - 4 = \pm\sqrt{3}, x + 4 + \sqrt{3}$
y intercept: 13
(B) Vertex: $(4, -3)$ (C) Minimum: -3 (D) Range: $y \ge -3$ or $[-3, \infty)$
20. $y = -(x - 4)^2 + 2$
22. $y = [x - (-3)]^2 + 1$ or $y = (x + 3)^2 + 1$
24. $g(x) = x^2 - 6x + 5 = x^2 - 6x + 9 - 4 = (x - 3)^2 - 4$
(A) x intercepts: $(x - 3)^2 - 4 = 0$

$$(x - 3)^2 = 4$$

 $x - 3 = \pm 2$
 $x = 1, 5$
(B) Vertex: (3, -4) (C) Minimum: -4 (D) Range: $y \ge -4$ or [-4, ∞)

26.
$$S(x) = -4x^2 - 8x - 3 = -4\left|x^2 + 2x + \frac{3}{4}\right| = -4\left|x^2 + 2x + 1 - \frac{1}{4}\right|$$

 $= -4\left[(x + 1)^2 - \frac{1}{4}\right] = -4(x + 1)^2 + 1$
(A) x intercepts: $-4(x + 1)^2 + 1 = 0$
 $4(x + 1)^2 = \frac{1}{4}$
 $x + 1 = \pm \frac{1}{2}$
 $x = -\frac{3}{2}, -\frac{1}{2}$
y intercept: -3
(B) Vertex: $(-1, 1)$ (C) Maximum: 1 (D) Range: $y \le 1$ or $(-\infty, 1]$
28. $V(x) = .5x^2 + 4x + 10 = .5[x^2 + 8x + 20] = .5[x^2 + 8x + 16 + 4]$
 $= .5[(x + 4)^2 + 4]$
 $= .5(x + 4)^2 + 2$
(A) x intercepts: none
y intercept: -3
(B) Vertex: $(-4, 2)$ (C) Minimum: 2 (D) Range: $y \ge 2$ or $[2, \infty)$
30. $g(x) = -0.6x^2 + 3x + 4$
(B) $g(x) = 5: -0.6x^2 + 3x + 4 = 5$
(A) $g(x) = -2: -0.6x^2 + 3x + 4 = -2$
 $0.6x^2 - 3x - 6 = 0$
 $0.6x^2 - 3x - 6 = 0$
 $0.6x^2 - 3x + 1 = 0$
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10

32. Using a graphing utility with $y = 100x - 7x^2 - 10$ and the calculus option with maximum command, we obtain 347.1429 as the maximum value. 34. The graph is entirely above or below the x axis. **36.** $m(x) = 0.20x^2 - 1.6x - 1 = 0.20(x^2 - 8x - 5)$ $= 0.20[(x - 4)^2 - 21]$ $= 0.20(x - 4)^2 - 4.2$ (A) x intercepts: $0.20(x - 4)^2 - 4.2 = 0$ $(x - 4)^2 = 21$ $x - 4 = \pm \sqrt{21}$ $x = 4 - \sqrt{21} = -0.6, 4 + \sqrt{21} = 8.6;$ y intercept: -1 (B) Vertex: (4, -4.2) (C) Minimum: -4.2 (D) Range: $y \ge -4.2$ or $[-4.2, ^{\circ})$ **38.** $n(x) = -0.15x^2 - 0.90x + 3.3$ $= -0.15(x^2 + 6x - 22)$ $= -0.15[(x + 3)^2 - 31]$ $= -0.15(x + 3)^{2} + 4.65$ (A) x intercepts: $-0.15(x + 3)^2 + 4.65 = 0$ $(x + 3)^2 = 31$ $x + 3 = \pm \sqrt{31}$ $x = -3 - \sqrt{31} = -8.6, -3 + \sqrt{31}$ = 2.6iy intercept: 3.30 (B) Vertex: (-3, 4.65) (C) Maximum: 3.30 (D) Range: $x \le 4.65$ or $(-^{\circ}, 4.65]$

46. f is a quadratic function and max f(x) = f(-3) = -5Axis: x = -3Vertex: (-3, -5)Range: $y \le -5$ or $(-\infty, -5]$ x intercepts: None

- 52. $f(x) = x^2$ and $g(x) = -(x 4)^2$ are two examples. The vertex of the graph is on the x axis.
- 54. $f(x) = -0.0206x^2 + 0.548x + 16.9$

(A)	X	0	5	10	15	20	25
	Market share	17.2	18.8	20.0	20.7	20.2	17.4
	f(x)	16.9	19.1	20.3	20.5	19.6	17.7

16.667 thousand computers(16,667 computers); 16,666.667 thousand dollars (\$16,666,667)

(C)
$$p\left(\frac{50}{3}\right) = 2,000 - 60\left(\frac{50}{3}\right) = $1,000$$

EXERCISE 2-4

2. (A) g (B) f (C) h (D) k

10

-20

-30

 $\begin{array}{c|c|c} x & y \\ \hline -3 & -27 \\ -1 & -3 \\ 0 & -1 \\ 1 & -\frac{1}{2} \\ 3 & -\frac{1}{27} \end{array}$

8. $g(x) = -3^{-x}, -3 \le x \le 3$ **10.** $y = -e^x, -3 \le x \le 3$

÷Χ

16. $10^{2x + 3}$ **18.** $\frac{e^x}{e^{1-x}} = e^{x-(1-x)} = e^{2x - 1}$ **20.** $(3e^{-1.4x})^2 = 9e^{-2.8x}$

22. g(x) = f(x - 2); the graph of g is the graph of f shifted 2 units to the right.

24. g(x) = -f(x); the graph of g is the graph of f reflected in the x axis.

26. g(x) = f(x) - 2; the graph of g is the graph of f shifted two units down.

28. g(x) = 0.5f(x - 1); the graph of g is the graph of f vertically contracted by a factor of 0.5 and shifted to the right 1 unit.

42. a = 2, b = -2 for example. The exponential function property: For $x \neq 0$, $a^{x} = b^{x}$ if and only if a = b assumes a > 0, b > 0.

44.
$$5^{3x} = 5^{4x-2}$$
 implies $3x = 4x - 2$ or $x = 2$

46.
$$7^{x^2} = 7^{2x + 3}$$
 implies $x^2 = 2x + 3$
 $x^2 - 2x - 3 = 0$
 $(x - 3)(x + 1) = 0$ or $x = -1$, 3
48. $(1 - x)^5 = (2x - 1)^5$ implies $1 - x = 2x - 1$ if $x < 1$ and $x > \frac{1}{2}$.

So
$$3x = 2$$
 or $x = \frac{2}{3}$ is a solution since $\frac{1}{2} < x - \frac{2}{3} < 1$.

50.
$$2xe^{-x} = 0$$

 $2x = 0$ (since $e^{-x} \neq 0$)
 $x = 0$

54.
$$m(x) = x(3^{-x}), 0 \le x \le 3$$

52.
$$x^2 e^x - 5x e^x = 0$$

 $x(x - 5) e^x = 0$
 $x(x - 5) = 0$ (since $e^x \neq 0$)
 $x = 0, 5$

56.
$$N(t) = \frac{200}{1 + 3e^{-t}}, \ 0 \le t \le 5$$

58. $f(x) = 5 - 3^{-x}$ Solve $5 - 3^{-x} = 0$ x = -1.46 **60.** $f(x) = 7 - 2x^2 + 2^{-x}$ Solve $7 - 2x^2 + 2^{-x} = 0$ x = -6.05, -2.53, 1.91

62.
$$A = P\left(1 + \frac{r}{m}\right)^{mt}$$
, we have:
(A) $P = 4,000$, $r = 0.07$, $m = 52$, $t = \frac{1}{2}$
 $A = 4,000\left(1 + \frac{0.07}{52}\right)^{(52)(1/2)} = 4,142.38$
Thus, $A = $4,142.38$.

(B)
$$A = 4,000 \left(1 + \frac{0.07}{52}\right)^{(52)(10)} = 8,051.22$$

Thus, $A = $8,051.22$.

- 64. $A = Pe^{rt}$ with P = 5,250, r = 0.0745, we have: (A) $A = 5,250e^{(0.0745)(6.25)} = 8,363.30$. Thus, there will be \$8,363.30 in the account after 6.25 years. (B) $A = 5,250e^{(0.0745)(17)} = 18,629.16$
 - Thus, there will be \$18,629.16 in the account after 17 years.

66. (A)
$$A = P\left(1 + \frac{r}{m}\right)^{mt}$$
.
Here $P = \$10,000$, $r = 0.055$, $m = 4$, $t = 5$ years.
Thus, $A = 10,000\left(1 + \frac{0.055}{4}\right)^{20} = \$13,140.67$.
(B) $A = P\left(1 + \frac{r}{m}\right)^{mt}$, where P and t are as in (A) and $r = 0.0512$,
 $m = 12$. Thus, $A = 10,000\left(1 + \frac{0.0512}{12}\right)^{60} = \$12,910.49$.
(C) $A = P\left(1 + \frac{r}{m}\right)^{mt}$, where P and t are as before and $r = 0.0486$,
 $m = 365$. Thus, $A = 10,000\left(1 + \frac{0.0486}{365}\right)^{5(365)} = \$12,750.48$.

68. Given $N = 40(1 - e^{-0.12t}), 0 \le t \le 30$

Maximum number of boards an average employee can be expected to produce in 1 day is 40.

70.	(A)	ExpRe9 y=a*b^x a=834.8429666 b=1.136045032

(B) The model gives an average salary of \$2,039,000 in 1997.Inclusion of the data for 1997 gives an average of 20,400,000 in 2015.

72. Given $I = I_0 e^{-0.00942d}$ (A) $I = I_0 e^{-0.00942(50)} = I_0 e^{-0.471} \approx I_0(0.62)$ Thus, about 62% of the surface light will reach a depth of 50 ft. (B) $I = I_0 e^{-0.00942(100)} = I_0 e^{-0.942} \approx I_0(0.39)$ Thus, about 39% of the surface light will reach a depth of 100 ft.

74. (A)
$$N = N_0 e^{x^2 t}$$
, where $N_0 = 25$, $x = 0.01$. Thus
 $N = 25e^{0.01t}$
(B) Since 2006 is year 0, for 2002 we need to take $t = -4$. Thus
 $N = 25e^{(0.01)(-4)} \approx 24,000,000$
For 2014, $t = 8$ and
 $N = 25e^{0.01(8)} \approx 27,000,000$
(C) $\frac{10}{24} + \frac{1}{24} + \frac{1}{26} + \frac{1}{24} + \frac$

4. $e^0 = 1$ **2.** $32 = 2^5$ 6. 27 = $9^{3/2}$ **8.** $\log_6 36 = 2$ **10.** $\log_{27} 9 = \frac{2}{3}$ **12.** $\log_{h} M = x$ 14. $\log_e 1 = y$ is equivalent to $e^y = 1; y = 0$. **16.** $\log_{10} 10 = y$ is equivalent to $10^{y} = 10; y = 1$. **18.** $\log_{13} 13 = y$ is equivalent to $13^{y} = 13; y = 1$. **20.** $\log_{10} 10^{-5} = -5$ **22.** $\log_3 3^5 = 5$ **24.** $\log_6 36 = \log_6 6^2 = 2$ **26.** $\log_b FG = \log_b F + \log_b G$ **28.** $\log_b w^{15} = 15 \log_b w$ **30.** $\log_3 P = (\log_R P)(\log_3 R)$ (change of base formula) or $\operatorname{Log}_{R} P = \frac{\operatorname{Log}_{3} P}{\operatorname{Log}_{2} R}$ **32.** $\log_2 x = 2$ **34.** log₂ 27= y $x = 2^2$ $\log_3 27 = \log_3 3^3 = 3 \log_3 3 = 3$ x = 4Thus, y = 3**38.** $\log_{25} x = \frac{1}{2}$ **40.** $\log_{49}\left(\frac{1}{7}\right) = y$ **36.** $\log_{b} e^{-2} = -2$ $-2 \log_b e = -2 \text{ or } \log_b e = 1$ $x = 25^{1/2}$ $\frac{1}{7} = 49^{Y}$ Thus, b = ex = 5 $y = -\frac{1}{2}$ **42.** $\log_{h} 4 = \frac{2}{3}$ $4 = b^{2/3}$ Taking square root from both sides, we have $b^{1/3} = 2$ Cubing both sides yields b = 8**44.** False. Take $f(x) = x^3 - x$, then f(-1) = f(0) = f(1) = 0. **46.** True. Indeed the graph of every function (not necessarily one-to-one) intersects each vertical line exactly once. **48.** False. x = -1 is in the domain of f, but cannot be in the range of g. **50.** True. $y = \log_b x$ implies that $x = b^y$. If b > 1, then as y increases so does b^{Y} . Therefore, the inverse of $x = b^{Y}$ which is $y = \log_{b} x$ must be increasing as well.

52. True. Since g is the inverse of f, then (a, b) is on the graph of f if and only if (b, a) is on the graph of g. Therefore, f is also the inverse of g.

54.
$$\log_b x = \frac{2}{3} \log_b 27 + 2 \log_b 2 - \log_b 3$$

 $= \frac{2}{3} \log_b 3^3 + 2 \log_b 2 - \log_b 3 = \log_b 3 + 2 \log_b 2$
 $= \log_b 12$
Thus, $x = 12$.
56. $\log_b x = 3 \log_b 2 + \frac{1}{2} \log_b 25 - \log_b 20$
 $= \log_b 40 - \log_b 20 = \log_b \frac{40}{20} = \log 2$
Thus, $x = 2$.
58. $\log_b (x + 2) + \log_b x = \log_b 24$
 $\log_b x(x + 2) = \log_b 24$
 $x(x + 2) = 24$ or $x^2 + 2x - 24 = 0$ or $(x - 4)(x + 6) = 4$
Thus, $x = 4$. [Note: $x = -6$ is not a solution since $\log_b(-6)$ is not defined.]
60. $\log_{10}(x + 6) - \log_{10}(x - 3) = 1$
 $\log_{10} \frac{x + 6}{x - 3} = 1$ implies that $\frac{x + 6}{x - 3} = 10$ or
 $x + 6 = 10x - 30$ or $9x = 36$ or $x = 4$.
62. $y = \log_3 (x + 2)$
 $x = 3^y - 2$
 $\frac{x}{25} = \frac{y}{3}$
 $\frac{y}{5}$

64. The graph of $y = \log_3(x + 2)$ is the graph of $y = \log_3 x$ shifted to the left 2 units.

66. Since logarithmic functions are defined only for positive "inputs", we must have x - 1 > 0 or x > 1; domain: $(1, \infty)$. The range of $y = \log(x - 1) - 1$ is the set of all real numbers.

68. (A) 1.86096**70.** (A) $\log x = 2.0832$ (B) -1.48095x = 121.1156(C) 10.60304(B) $\log x = -1.1577$ (D) -5.12836x = 0.0696(C) $\ln x = 3.1336$ x = 22.9565(D) $\ln x = -4.3281$ x = 0.0132

74. $e^x = 0.3059$ (Take natural logarithms of both sides) ln $e^x = \ln 0.3059 = -1.1845$ x = -1.1845 (ln $e^x = x \ln e = x$; ln e = 1)

76. $1.075^x = 1.837$ (Take either common or natural logarithms of both sides.) We use natural logarithms.

 $\ln 1.075^{x} = \ln 1.837$ $x = \frac{\ln 1.837}{\ln 1.075} = 8.4089$

78. 1.02^{4t} = 2 (Take either common or natural logarithms of both sides.) Here we'll use common logarithms.

$$\log 1.02^{4t} = \log 2$$
$$t = \frac{\log 2}{4 \log 1.02} = 8.7507$$

- **88.** It is not possible to find a power of 1 that is an arbitrarily selected real number, because 1 raised to any power is 1.
- **90.** $\log_{2} x \log_{2} 25 = 0.2t$

$$\log_e \frac{x}{25} = 0.2t$$

Therefore, $\frac{x}{25} = e^{0.2t}$, and $x = 25e^{0.2t}$

94. From the compound interest formula $A = P(1 + r)^t$, we have: $2P = P(1 + 0.0958)^t$ or $(1.0958)^t = 2$ Take the natural log of both sides of this equation: $\ln(1.0958)^t = \ln 2$ [Note: The common log could have been used instead of the natural log.] $t \ln(1.0958) = \ln 2$ $t = \frac{\ln 2}{\ln(1.0958)} \approx \frac{0.69315}{0.09148} \approx 8$ years

96.
$$A = P\left(1 + \frac{r}{m}\right)^{mt}$$
.
For $P = \$5,000$, $A = \$7,500$, $r = 0.08$, $m = 2$, we have:
 $7,500 = 5,000\left(1 + \frac{0.08}{2}\right)^{2t}$
 $(1 + 0.04)^{2t} = \frac{7,500}{5,000} = 1.5$
 $2t \ln(1.04) = \ln(1.5)$
 $t = \frac{\ln(1.5)}{2\ln(1.04)} \approx 5.17$ years

If compounded monthly, then m = 12 and $7,500 = 5,000 \left(1 + \frac{0.08}{2}\right)^{12t}$ $\left(1 + \frac{0.08}{2}\right)^{12t} = 1.5$ $12t \ln\left(1 + \frac{0.08}{2}\right) = \ln(1.5)$ $t = \frac{\ln(1.5)}{12\ln\left(1 + \frac{0.08}{12}\right)} \approx 5.09$ years

100. (A)
$$N = 10 \log \frac{I}{I_0} = 10 \log \frac{10^{-13}}{10^{-16}} = 10 \log 10^3 = 30$$

(B) $N = 10 \log \frac{3.16 \times 10^{-10}}{10^{-16}} = 10 \log 3.16 \times 10^6 \approx 65$
(C) $N = 10 \log \frac{10^{-8}}{10^{-16}} = 10 \log 10^8 = 80$
(D) $N = 10 \log \frac{10^{-1}}{10^{-16}} = 10 \log 10^{15} = 150$

102.

For 2015, x = 115 and $y = -39,370.20369 + 10,572.08468(115) \approx 10,794$ million bushels.