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CHAPTER ONE

Essential Background
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An engineering analysis problem is formulated in terms of the following second order boundary value
problem

—ux*-u +u"=x 0<x<1
uO=4andu’ () =1

Derive a suitable weak form for use with the Galerkin method. Clearly indicate how the boundary condi-
tions will be handled.




Essential Background

With u(x) as an assumed solution the residual is
e(x) = —ux) x* —x — U'(x) + u”(x)
Multiplying by w(x) and writing integral over the given limits, the Galerkin weighted residual is
fé(—uwx4 —wx-wu +wu”’)dx=0
Using integration by parts, the order of derivative in w u” can be reduced to 1 as follows.
fé(w u”) dx =w() u’(1) —w(O)u’(0) + f(l)(—u’ w’) dx
Combining all terms, the weighted residual now is as follows.
w(l) U’ (1) —w(O) U’ (0) + fé(—w (ux* +x+u’)-u'w)dx=0
Consider the boundary terms
w(l) u’'(1) —w(0) u’(0)

Each one of these terms gives rise to two possibilities

-w(0)u’(0) Either —u’(0) is known or w(0) =0
w(l)u’(1) Either u’(1) is known or w(1) =0

From these requirements the possible boundary conditions are as follows:

NBC EBC
1 —u’(0) is given or w(0) = 0 = Must satisfy u(0) boundary condition
2 u’(1) is given or w(1l) = 0 = Must satisfy u(1) boundary condition

Given NBC for the problem:
vl -1=0
Rearranging: (u’ (1) > 1)
Given EBC for the problem:
u0)-4=0
therefore with admissible solutions (those satisfying EBC): (w (0) - 0)

Thus the boundary terms in the weak form reduce to:
w(l)

Assuming admissible solutions the final weak form is as follows.

W(l)+fé(—W(ux4+x+u’)—u’W’)dx:O
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An engineering analysis problem is formulated in terms of the following ordinary differential equation

d?u du _ .
W—XW— u, 0<x<1

u(O) = G -2 G =1

Obtain a suitable weak form for the problem. What is the order of the differential equation? Is the bound-
ary condition at x = 0 a natural or an essential boundary condition? Is the boundary condition at x=1 a
natural or an essential boundary condition?

(i) Second-order
(ii) Natural
(iii) Natural

(iv)



V)

Essential Background

With u(x) as an assumed solution the residual is
e(X) = —u(x) — xu’'(x) + u”(x)
Multiplying by w;(x) and writing integral over the given limits, the Galerkin weighted residual is
f;(—uwi —xu'w;+u”’w)dx=0
Using integration by parts, the order of derivative in w; u” can be reduced to 1 as follows.
1 ’” ’ ’ 1 ’ ’
Jowiu”)y dx = wi(D) u'(1) - Wi u'(0) + [o(~u’ wy') dx
Combining all terms, the weighted residual now is as follows.
w;(1)u’(1) — w;(0) u’(0) + f(l)(—u wi —u (Xw; +w;")) dx =0
Consider the boundary terms
wi(1) u’(1) - w;(0) u'(0)
Each one of these terms gives rise to two possibilities

-w;(0) u’(0) Either —u’(0) is known or w;(0) =0
w;(1)u’(1) Either u’(1) is known or w;(1) =0

From these requirements the possible boundary conditions are as follows:

NBC EBC
1 —u’(0) is given or w;(0) = 0 = Must satisfy u(0) boundary condition
2 u’(1) is given or w;j(1) = 0 = Must satisfy u(1) boundary condition

Given NBC for the problem:

u0)-u@®+2=0
vl -1=0

u'(O)—>u(0)+2)

Rearranging: ( ‘D)o 1
u -

Thus the boundary terms in the weak form reduce to:
w;i(1) - (u(0) + 2) w;(0)

Assuming admissible solutions the final weak form is as follows.

w;(1) — (u(0) + 2) w;(0) + f;(—uwi —u (Xwj+w;)dx=0



Linear solution
Starting assumed solution: u(x) = ag + Xa;
Weighting functions - {1, x}

Substitute into the weak form and perform integrations to get:

Weight Equation

1 —-23y-a;-1=0
a 5a _

X -3 -3-+1=0

Solving these equations we get

{aﬁ—%'aﬁﬁ}

Substituting into the admissible solution we get the following solution of the problem.

1
ux) = T (15x—16)
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Steady state heat flow through long hollow circular cylinders can be described by the following ordinary
differential equation.

L kALR)+AQ=0; ri<r<r,
T(r) =T T(r)=To

where r is the radial coordinate, T(r) is the temperature, k is the thermal conductivity, Q is the heat genera-
tion per unit area, A = 2xrL the surface area, L is the length of the cylinder, r; is the inner radius, and r, is
the outer radius. The boundary conditions specify the temperature on the inside and outside of the cylin-
der respectively. Derive finite element equations for a typical two node linear element for the problem
with nodes at r;and r,. Assume k and Q are constant over the element. Note that A is a function of r and is
not constant over the element.

Derivation of element equations

Element nodes: {ry, r,}

ry—r ry—r )

Interpolation functions, N' = Pra—
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BT =dN/dx= (=~ ——)

1-2 -1
k(ry=2kLxr pr)=0 qr)=2LaQr

2 2 2 2
2kLn{'72—'71] 2kLn{'72-'71]
(r1—rp)? (r1=r2) (r2=r1)

2 2 2 2
2kLn{'72—'71] 2kLn{'72-'71]

(r1—13) (rp—ry) (r—r1)?

ko= [r@kLarBBT)dr =

r 1 1
r; = frj(z LzQrN)dr = {—E LrQ(ry —r)(2ry +1y), -3 LrQ(ry—rp)(ry +2r2)}
The complete element equations are as follows.

2 2 2 2
2k Lﬂ(%—%] 2kLn(%—%] L
(ry-rp)? (ry—rp) (rz—ry) ( Ty _ [ ) LrQ(ry —r2)(2ry +12)

2 2 2 2 -
2kLn(%—ﬁz~] 2kLn(%—% T —+LaQ(r - 1) (1 +21)

(ry—rp) (rp—ry) (ry—r1)?
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Consider solution of the following second order boundary value problem using two node linear elements.

d’u _ du.
o - dx’ 0 <x<100

u(0) = 50; u(100) =10

(a) Show that the following is an appropriate weak form for a typical linear element with nodes at arbi-
trary locations x; and X,

fZ(u’ Wi +w;" ) dx=0
where wj(x) are suitable weighting functions.

(b) Using the weak form given in (a), and the assumed solution written in terms of following interpolation
functions
Uz , AN
ue) = (N Nz)(u ); u'(x) = (N3 Nz)(u )

2 2

show that the element equations for a two node linear element for this problem are as follows.



uz

[f):z(Nl+N’l)N’ldx f):Z(N1+N’l)N’2dX](u1) (0)

X: ’ ’ X ’ ’
Jo© (N + N Npdx [ (N2 + Nj) N dx 0

X

(c) Carrying out integrations, the element equations in (b) can be expressed as follows.
L(_LJFZ L—Z)(ul)_(O)
2L{L-2 L+2)\u,) \o

where L = X, — X4, the element length. Using three of these elements, with nodes located at 0, 60, 90, and
100 determine an approximate solution of the problem.
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With u(x) as an assumed solution the residual is
e(x)=Uu'(x)—-u"(x)

Multiplying by w;(x) and writing integral over the given limits, the Galerkin weighted residual is
fii(wi u—wu’)dx=0

Using integration by parts, the order of derivative in —w; u” can be reduced to 1 as follows.
Seewiu”)y dx = witk) U'(x) = Wio) U (%) + [0 (U’ i) dx

Combining all terms, the weighted residual now is as follows.
Wi (%) U'(X) = Wik U' (%) + [0 (U’ (W +w;')) dx = 0

Consider the boundary terms
Wi(Xq) U’ (X1) = Wi(X2) U'(X2)

Each one of these terms gives rise to two possibilities

W;(Xq) U'(Xq1) Either u’(x;) is known or w;(x;) =0
—W;(X2) U’ (X2) Either —u’(x,) is known or w;(x,) = 0

From these requirements the possible boundary conditions are as follows:

NBC EBC
1 u'(x1) is given or wi(X1) = 0 = Must satisfy u(x;) boundary condition
2 —U'(Xy) is given or Wwi(Xy) = 0 = Must satisfy u(x,) boundary condition

Given EBC for the problem:

uxy))-u; =0
uX)—u, =0

Wi (xl)—>0)

therefore with admissible solutions (those satisfying EBC): (
Wi (X2) > 0

All boundary terms vanish.

Assuming admissible solutions the final weak form is as follows.

fii(u’ Wi +w;))dx=0

Assumed solution



ux) = (N Nz)( l)ENTd

u
uz
u
u'(x) = (N N’z)( l)EBTd
uz
Weighting functions w; = N;
Weak form
LN+ N dx =0
1
Two equations

f):z(Nl +Nj)u dx = 0; f):z(Nz +Ny)u dx=0

Writing together in a matrix form
X2 (N7 + Nj u 0
[ (g o 2o ()
Xy N, + N2 Uo 0

1

[fxxf (N, + N%) Nj dx fxf (N, + N%) N dx

)~ (o)

Sl (Np+ NpNjdx [ (Ng + Ny N dx](

Linear assumed solution

u
X=X X—Xq 1
ux) = ( X1—Xp Xp—X1 )( )

u

{n1, N2} = {(x—x2)/(x1 —x2), (x—x1)/(x2 —x1)} /. X2 - (x1 + L); {b1, b2} = {D[n1, x], D[n2, X]};

Integrate[(nl + b1) b1, {x, x1, x1 + L}] // Together
2-L

2L

Integrate[(nl + b1) b2, {x, x1, x1 + L}] // Together

L-2
2L
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Integrate[(n2 + b2) b1, {x, x1, x1 + L}] // Together

-L-2
2L

Integrate[(n2 + b2) b2, {x, x1, x1 + L}] // Together

L+2
2L

1 (—L+2 L_Z)(U1)_(O)
2L{—L-2 L+2)lu,) \o

kIL_]:=1/2L){{-L+2,L-2},{-L-2,L+2}};

Element 1: L= 60

k1 = k[60]

_2
60
_3

60

29
60
3L
60

2

(o)

_29
60 60 (U1)
_ 31 3 U,

60 60

Element 2: L= 30

k2 = Kk[30]

|(2)-(5)

Element 3: L= 10

k3 =k[10]

)

gljw G
glw G



-

Global equations

glw afr
glw afr

I()-(5)

K = Table[0, {4}, {4}];
KI[{1, 2}, {1, 2}]] +=K1;
KI[{2, 3}, {2, 3}]] +=k2;
KI[(3, 4}, {3, 4}]] +=k3; K

-2 2 00
% % w0
0 -% % %
0 0-% 3
_%%Ooul 0
% w w Of|u| [0
0 & & E|[w|T|0
0 3 3 Uy 0
5 5

Essential boundary conditions
u; =50; us, =10

Introducing known values and removing the first and the last equations

50
31 1 7
(_E 20 1 O] u, :(0)
8 2
0 -5 & 3)|U| \0
10

© N~
=
o
—————
p—
c C
w N
N —
Il
N

7 31
0 _ 0
] 0 5

Thus the final system of equations is as follows.

-

11
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R R

T15 15

Nodal solution

Kf = K][[{2, 3}, {2, 3}]]
1
20 15
2]
15 15
Rf = ~50{KI[2, L11, KI[3, 111} - 10 {KI[2, 411, KI[3, 411}

(2.9

sol = LinearSolve[Kf, Rf]
{ﬂ 1222}
23" 23

d = {50, sol[[1]], sol[[2]], 10}

{50, 4rg 1222 10}
23 23

Element solution

{n1, n2} = {(x-x2)/(x1 —x2), (x—x1)/(x2 - x1)};

uxl = {n1, n2}.d[[{1, 2}]]/. {x1 - 0, X2 - 60} // Expand
56 x

115

ux2 = {n1, n2}.d[[{2, 3}]] /. {x1 - 60, x2 - 90} // Expand
124x 1010

115 23

ux3 = {n1, n2}.d[[{3, 4}]1]1/. {x1 - 90, x2 - 100} // Expand
10150 496 x

23 115

Clear[u]; exactSol = DSolve[{u"[X] == u'[X], u[0] == 50, u[100] == 10}, u[x], X]



101 -5 +4¢%
{{U(X) - - 1 + 100 }}

Plot[{exactSol[[1, 1, 2]], Which[x < 60, ux1, x < 90, ux2, x > 90, ux3]}, {x, 0, 100}, PlotRange - All];

50 A

40 +

30 ¢

20 ¢

20 40

60 80 100

DlexactSol[[1, 1, 2]], {X, 2}]

40 *
T 1t e

DlexactSol[[1, 1, 2]], X]

40 ¢*
S

15
Consider the following boundary value problem
4 (x)=2 1<x<2
dx

u@)=2and & 2)= -+

Compare solution and its first derivative obtained by using the following two models

(a) Use two equal length linear finite elements.

(b) Use one quadratic finite element.
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Derivation of element equations

Element nodes: {X;, X5}

X—Xp X1—X )

- . T
Interpolation functions, N' = ( ;=5 75

BT =dN"/dx = (= L)

1-X2 Xo—X1

2
k(x) = x px) =0 qX) = - =z

X1+Xp X1 +Xp
2X1-2X%p 2X1-2X%p )

X1+X2 XX
2X1-2X%y 2X1-2X%y

ksz:i(xBBT)dx=(

e, 2 [ 2((log(x)) —10g(X;) = D) X1 +X5) 2 (X4 + (=log(xy) + 10g(xz) = 1) X,)
Mg = fxl( X2 N) dx = { X1 (X1 = Xp) ' (X1 =X2) %2 }

The complete element equations are as follows.

2 2 2 2

FF -+ 2((log (0)-10g (X)=1) X1 +p)
(X1—%)? (X1=X2) (X2—=X1) Ur) X1 (X1=X2)
3 B 2 Up ) | 20a+(logx)+log (o)-1) xp)
2 "7 2 "2 (X1-X2) X2
(X1=X2) (X2—X1) (Xp=x1)?

2 element solution

Nodal locations: {1, 1.5, 2}
Element 1
Element nodes: {x; - 1, X, - 1.5}
(2.5 —2.5)(u1)_(—0.37814 )
-25 25 up —0.288527
Global equations after assembly of this element

25 =25 0)\(u -0.37814
-25 25 0]|u, [=]-0.288527
0 0 0/J\u; 0

Element 2

Element nodes: {x, - 1.5, X3 = 2}



(3.5 -35 ) ( Up ) ~ ( —0.182605)
-35 35 uz ) \-0.150728

Global equations after assembly of this element

25 -25 0 u ~0.37814
~25 6. -35]||u, [=|-0471132
0 -35 35 Jlu, ~0.150728

Global equations before boundary conditions

25 -25 0 u ~0.37814
—25 6. -35||u, |=|-0471132
0 -35 35 Jlu, ~0.150728

Natural boundary conditions

DOF @ B

Us 0 -1

DOF k(x) —-kx) @ kx) B
us 2 0 -1

2

Global equations after incorporating NBC

25 -25 0 u ~0.37814
—25 6. -35||u, |=|-0471132
0 -35 35 Jlu, ~0.650728

Essential boundary conditions

DOF Value
u; 2

Incorporating EBC the final system of equations is
(6. -35 ) ( up ) B (4.52887 )
-35 35 uz ) \-0.650728

Solution for nodal unknowns

DOF Solution
u; 2

U, 15 1.55126
U3z 1.36533

15



16 Essential Background

Solution over elements
Element 1
Nodes: {x; - 1, x, > 1.5}
Interpolation functions: NT = {3.-2.%, 2.x=2}
Nodal values: d7 = {2, 1.55126}
Solution: u(x) = N"d = 2.89749 — 0.897488 x
Element 2
Nodes: {x; —» 1.5, X, > 2}
Interpolation functions: N" = {4. - 2.x, 2.x — 3.}
Nodal values: d" = {1.55126, 1.36533)

Solution: u(x) = N'd = 2.10902 — 0.371845 x

Solution summary

Range Solution
1 1l<x=<15 2.89749 — 0.897488 x
2 15=<x=<2 2.10902 — 0.371845x

Derivation of element equations
1
Element nodes: {xl, 3 (X1 +X3), Xs}

Interpolation functions, N7 = ( £6=0E2xang) - 20000k - Lus)C2xieng)

(x1—%3)? x1-x3)? x1-x3)?
T_ T _( _ ZAX+X3+3 X3 4 (=2 X+X1+X3) _ AXE3X1+X3
B =dN /dx = ( (x1—X3)? (x1—X3)? (x1—%3)? )
2
k(x) = x p(x) =0 A =-—7
_ 11x+3x3 2 (3X1+X3) __X1tX3
6x7-6X3 3 (X1—X3) 6x7—6 X3
> T | 2@xi+x3) _ 8(x1+x3) 2 (X1 +3X3)
K = fxl(x BB)dx= 3 (X1-X3) 3 (X1—X3) 3 (x1—X3)
X1+X3 2 (X1+3X3) _ 3x3+11x3

6x1-6 X3 3(X1—X3) 6X1-6 X3



17

_ 2((log(xy) ~ log(xs) ~ 3) X2 + (3log(xy) — 310g(X3) + 2) X3 X1 + X3)
X1 (X1 — X3)? ’

2
rngii(—F N) dx = {

8 ((log(x1) = log(x3) — 2) X1 + (log(x1) — 10g(X3) + 2) X3)

(X1 — X3)?
2. (& + (=3 10g(x1) + 3log(x3) + 2) X3 X1 + (~log(x;) + 10g(x3) — 3) X3) }
(X1 — X3)% X3

The complete element equations are as follows.

Clx43%  2BXitXs) Xi+Xs _ 2((log (x1)-log (x3)-3) X +(3 log (x;)-3 log (x3)+2) X3 X1 +X3)
6X,—6 X3 3 (X1 —X3) 6X;—6X3 up X1 (X1 —X3)?
2(BX1t+X3) _ 8(XitX3) 2(X1+3X3) u, | = 8 ((log (x)—log (x3)—2) X3 +(l0g (X;)—10g (X3)+2) X3)
3(X1—X3) 3(X1—X3) 3(X1—X3) 2 (= (X1—X3)
L XitX3 2(X1+3X3) _ 3x+1lxs us 2 (X3 +(=3 log (x;)+3 10g (X3)+2) X3 X1 +(—log (x;)+10g (X3)—3) X3)
6X;—6 X3 3 (X —X3) 6 X1—6 X3 (X1—X3) X3

1 element solution

Nodal locations: {1, 1.5, 2}

Element 1

Element nodes: {x; = 1, X, » 1.5, X3 > 2}

7 10 1

6 3 2 U, -2 -"7log(2)

-3 8 - ¥ 1y, [=]8@2-3log(2)
3 3

1 _14 25 Us —-7+101log(2)

2 3 6

o 11

6 3 2 Uq -2(-"7log(2)
-2 8 -Z v, |=]|82-3log(2)

1 _u 25 Us -7+ 10log (2)

2 3 6

7 _10 1
6 3 2 U -2(5-"7log(2))
28 -2 M u, |=]|82-3log(2)
1 _14 25 Uz —-7+101log(2)

2 3 6

Natural boundary conditions



18 Essential Background

DOF @ B

U3 0 -0.25

DOF k(x) —k(x) @ k(x) B
U3 2 0 -0.5

Global equations after incorporating NBC

2 up -2(5-71log(2))
-2 8 - llu |=|8@2-3l0g(2)
1 1 2 |lug) \-0568528
2 3 6

Essential boundary conditions

DOF Value
u; 2

Incorporating EBC the final system of equations is

8 -5 (uz)_(%+8(2—3log(2))]
-2 2 Jlug/) | -156853

3

Solution for nodal unknowns

DOF X Solution
u, 1 2

U, 15 1.54124
Us 2 1.34975

Solution over elements
Element 1
Nodes: {X; —» 1, X, = 1.5, X3 — 2}
Interpolation functions: N' = {2x* - 7x +6, —4x* + 12x - 8, 2x* - 5x + 3]
Nodal values: d" = {2, 1.54124, 1.34975)
Solution: u(x) = N'd = 0.534517 x* — 2.25381x + 3.71929

Solution summary

Range Solution
1 l<x=<2 0.534517 x? — 2.25381 x + 3.71929



u(x)

1.9
1.8
1.7
1.6
15
14

1.2 14

du(x)/dx

1.6

1.8 2

-0.2
-0.4
-0.6
-0.8

-1
-1.2

16

12 14

1.6

1.8

N

A four node quadrilateral element is shown in Figure 1.12.

y{o’ 3) 2Actual element

1

{0, 0}

2}

Figure 1.12.

4

Master element
t

2 Linear

1 Quadrati

2 Linear

1 Quadrati
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